Category: Urban

AQMesh used in smart cities to share air quality data with the public

AQMesh used in smart city networks to share air quality information with the publicIn an inter-connected world, air quality is increasingly becoming another measurement made available to the public, but how reliable is the data?

Common air pollutants such as NO2 and PM2.5 mix at different rates depending on their source and local weather conditions, particularly wind speed, leaving large local variations in pollution levels. Urban air quality has traditionally been managed by authorities using a combination of large, compliance standard (reference) measurement stations and modelling based on an emissions inventory. Research has shown that increasing the number of measurement points improves the spatial resolution of urban air quality models.

Small-sensor air quality monitoring technology offers the possibility of more local measurements, and its emergence coincides with the appetite from Internet of Things (IoT) developers to map air quality across cities in real-time and communicate this information to the city inhabitants in various ways. This is leading to a growing number of smart city projects using a range of monitoring devices, but understanding the air quality information gathered and sharing it with the public can still be complicated.

Many air quality sensors that are small, cheap and have low power consumption are often very limited by the influence of fluctuating temperatures and cross-gas effects and do not produce good air quality readings. It is therefore beneficial to use a small-sensor air quality monitoring system that incorporates processing, correction and a QA/QC process in order to offer meaningful readings. Environmental authorities, including the US EPA, have developed air quality indices (AQI) and other tools to communicate local air quality to the public. These authorities are looking at how to modify that approach to provide more localised information from small sensor-sensor systems, such as air quality in a neighbourhood – or even a street – rather than a whole section of a city.

AQMesh, a small-sensor air quality monitoring system, is being used in a variety of successful smart city projects which have a range of objectives, but with a common goal of informing the public about the air quality and pollution levels in the local area where they live and work.

‘Breathe London’ was launched in February, with a sophisticated network of air quality monitors to help investigate and improve London’s toxic air. A range of fixed and mobile sensors will be used to build up a real-time, hyperlocal image of London’s air quality. The technology company Air Monitors designed and installed the network of AQMesh air quality monitoring pods, as well as the air quality analysers that were specially adapted to operate inside Google Street View cars.

In Minneapolis, Minnesota Pollution Control Agency (MPCA) has deployed 50 AQMesh pods across 50 zip code areas in order improve understanding of the small-scale differences in air pollution within urban areas.

Similarly in Newcastle, 55 AQMesh pods, supplied and supported by Air Monitors, form part of a network of over 600 sensors managed by the UK’s first Urban Observatory, which aims to provide Newcastle’s citizens with a digital view of how cities work.

These smart cities demonstrate that meaningful and reliable air quality information can be shared with the public when networks are deployed effectively and supported by air quality professionals who understand the capabilities – and limitations – of small-sensor technology and how the local environment affects air quality readings.


Learn more about AQMesh.

In the UK? Visit Air Monitors Ltd.

Read more AQMesh news.

Urban Observatory monitors Newcastle with new generation of environmental sensors

AQMesh air quality monitor being installed in NewcastleThe UK’s first Urban Observatory, led by Newcastle University, has been designed to provide a digital view of how cities work. AQMesh air quality monitoring equipment is being deployed across Newcastle and Gateshead in conjunction with other instruments for monitoring parameters such as air and water quality, noise, weather, energy use, traffic and even tweets.

Forming part of a network of over 600 sensors, the Urban Observatory has already collected over half a billion data points and the information is now starting to shed light on the way different systems interact across the city and provide a baseline against which future cities can be developed and managed.

To date Air Monitors, UK AQMesh distributor, has supplied 55 AQMesh pods and 6 conventional air quality monitoring stations. The conventional stations employ standard reference method instruments to measure key air quality parameters such as Nitrogen Dioxide, Ozone, Carbon Monoxide and Particulates. The AQMesh pods monitor similar parameters, but are smaller, solar-powered, wireless, web-enabled devices that can be quickly and easily located in almost any location.

Commenting on Air Monitors’ involvement in the Urban Observatory project, Managing Director Jim Mills says: “The conventional stations are delivering precise, accurate data, and the AQMesh pods are providing the portability and flexibility to monitor air quality accurately and reliably in the locations of greatest interest.”

“Perhaps the most interesting aspect of this project is its ability to engage with the community, providing detailed local air quality data so that both authorities and citizens can make informed decisions on how to reduce exposure to air pollution. Looking forward, it is clear that work in Newcastle will serve as a model for other cities around the world to follow.”

The National Observatories facility was established in 2017 with the Newcastle Urban Observatory as the founding member, supported by £8.5 million investment from EPSRC (Engineering and Physical Sciences Research Council). The guiding principles are to be technology agnostic and vendor non-exclusive, open by default and transparent by design whilst developing a valued, long-term, sustainable platform. In order for the data to be useful to better understand cities and to facilitate evidence based decision-making across a range of scales and sectors, the data needs to be robust and reliable with known data quality that can be validated.

The AQMesh pods are also being used as part of the ‘Sense My Street’ tool box which enables local communities to deploy sensors and locate them on the streets, collecting evidence to inform or even change their communities.

Phil James, who co-leads the Urban Observatory research, explains: “Cities are complex environments and if we want to develop them sustainably we have to understand how everything interacts.

“By compiling observations and comparing the data, for the first time we are now able to make more informed decisions about designing our cities to work better for people and the environment. Through the Sense my Street project, we are able to give communities the power to gather data relevant to issues that are important to them at a very local scale.”

All of the data is freely available at Newcastle University’s website:, and is being used by researchers, local authorities, regulators, developers, town planners, businesses and members of the public.


Learn more about AQMesh.

Visit UK AQMesh distributor Air Monitors Ltd.

Read more AQMesh news.

AQMesh shows high accuracy local ozone readings across global locations

AQMesh shows high accuracy for measuring ozone across global locationsAQMesh has been measuring ozone (O3) using small sensors since 2011 and the readings from the latest generation electrochemical sensor, using AQMesh v4.2.3 processing, as compared to co-located certified reference readings, consistently show an R2 of over 0.9 with an accuracy ±10ppb (20µg/m3).

AQMesh pods have been measuring ozone levels around the world and co-location comparison studies show very good performance against reference equipment from the latest sensor and processing version. Ozone levels have been particularly high across Western Europe over this summer but are a regular concern in many parts of the world, including the USA. However, there are huge gaps between O3 monitoring points, to different degrees across the world, depending on monitoring equipment budgets. A lower cost small-sensor monitoring solution can provide valuable data within the areas currently lacking in this air quality information. Data validity is typically demonstrated by comparison with a local reference station, although AQMesh is also widely used where no reference data is available.

O3 at ground level is formed by reactions with nitrogen oxides (NOx) and volatile organic compounds (VOCs) from traffic and industrial emissions in the presence of sunlight. As such, hotter, sunnier weather can dramatically increase O3 pollution.

The World Health Organisation (WHO) currently states the daily limit of O3 levels to be 100μg/m3 over an 8-hour mean and advise that prolonged exposure to high levels of O3 can have severe effects on human health, including causing asthma, inflammation of the airways, reduced lung functionality and lung disease. Measuring O3 as a part of an air quality monitoring routine is therefore becoming increasingly important, especially in hotter climates and areas of increased VOC emissions.

O3 can be complicated to measure due to its high sensitivity to environmental conditions and cross-gas effects. Most small sensors for measuring O3 are either electrochemical or metal oxide, but electrochemical sensors (such as those used in AQMesh) have the advantage of low power requirements and can therefore be installed more flexibly. AQMesh pods are compact, wireless units and are available with a variety of power options, including solar panels, which allow them to be installed exactly where monitoring needs to take place.

During summer 2018 AQMesh has been measuring ozone at hundreds of locations across five continents and co-location comparisons show consistently high levels of accuracy. To quote two of many such studies, in an industrial region of the USA, AQMesh O3 measurements compared to FEM gave an R2 of 0.97, and in a similar comparison study in Western Europe the R2 value for O3 was 0.95. AQMesh pods measuring gases can run continuously for over two years using a battery but other power options are available, including solar. Particulate matter (TPC, PM1, PM2.5, PM10) can also monitored with an AQMesh pod, alongside gases including NO, NO2, O3, CO, SO2, CO2 and H2S, as well as pod temperature, RH% and pressure.

The accuracy of AQMesh readings has been proven through an extensive series of global co-location comparison trials and is the proven, commercially available low-cost air quality monitoring system for both pollutant gases and particulate matter, as well as simultaneously monitoring a range of environmental conditions.


Learn more about AQMesh.

Browse AQMesh co-location comparison trial results.

Read more AQMesh news.

Car-free Cardiff achieves 69% air quality improvement

AQMesh helps Cardiff achieve 69% air quality improvementOn Sunday 13th May 2018, Cardiff Council organised a car-free day in the city’s central area. As a result of this event air quality monitoring data showed an average 69% drop in nitrogen dioxide (NO2) – one of the pollutants of greatest public health concern. Seeking a better understanding of the relationship between air quality and traffic, Cardiff Council hired three AQMesh air quality monitoring pods from Air Monitors Ltd. The instruments were located on streets impacted by the day’s event, and within two of the Councils Air Quality Management Areas (AQMAs); City Centre & Stephenson Court, Newport Road. The instruments continuously recorded air quality at these locations for 20 days before, during and after the event.

“In comparing the results obtained during the Car Free Day Event with results from the following Sunday (20th May) , the monitor on Duke Street showed an 87% reduction in nitrogen dioxide, the monitor in Westgate Street showed an 84% reduction and the third monitor, which was located less centrally from the main road closures, in Stephenson Court, showed a 36% reduction,” commented a Specialist Services Officer, working for Shared Regulatory Services (SRS) on behalf of Cardiff Council . “Comparing the car-free datasets with those of the following Sunday (20th May); the daily average nitrogen dioxide levels recorded by two of the monitors situated within the City Centre AQMA exceeded the EU yearly average limit (40 µg/m3), but on the car-free day, these two monitors measured daily average figures of just 5 and 8µg/m3 of nitrogen dioxide, providing clear evidence that air pollution in Cardiff city centre is generated by traffic.”

Under the European Ambient Air Quality Directive, Welsh Ministers have a duty to ensure that compliance with air quality objectives defined within the directive is achieved. As outlined in Defra’s UK Action Plan for tackling roadside nitrogen dioxide concentrations, July 2017, modelling has indicated that certain road networks in Cardiff fail to meet EU air quality requirements. Cardiff Council has been directed by Welsh Government to undertake a feasibility study, in order to demonstrate how compliance with the directive and its specified limits will be achieved in the shortest time possible. In order to implement air quality interventions, the Council therefore needs to evaluate the sources of pollution so that appropriate interventions can be assessed to ensure that effective mitigation measures can be implemented. At the same time, it will be necessary to engage with citizens to ensure that they appreciate the importance of tackling air pollution.

AQMesh helps Cardiff achieve 69% air quality improvementNitrogen dioxide and particulates are the main cause of failures to meet EU air quality limits in cities around the world, and it is well known that traffic, and diesel vehicles in particular, are a major source of these pollutants. The AQMesh pods measure a range of gases including nitrogen dioxide, so by monitoring the effect of removing traffic, the Council will be in a better position to implement improvement measures.

Two automatic air quality monitoring stations are located in Cardiff, and the Council supplements the data from these monitors with a network of non-automatic passive diffusion tubes. However, the Specialist Services Officer from SRS says: “The fixed stations can’t provide street-level monitoring at the most sensitive locations, and the use of diffusion tubes does not provide a detailed understanding of daily trends as they only provide a monthly average figure. However, SRS are aware of the capabilities of the AQMesh pods and are familiar with the accuracy and flexibility that they are able to deliver, which is why they were chosen for the car-free day project.”

In order to assure the quality of the monitoring data, the AQMesh pods that were employed during the project were checked against a reference station and were found to have performed very well. “The pods are small, lightweight and battery-powered which makes them quick and easy to deploy,” the Specialist Services Officer adds. “This is crucial to our work because it gives us the ability to site them on lamp posts so that they measure the air that people are breathing. In addition, they are web-enabled which means that we can monitor air quality in almost real-time; providing a unique insight into the specific events that impact air quality.”

It has been estimated that around 40,000 people in the UK die prematurely as a result of air pollution, mainly in the larger towns and cities. In Wales, the urban areas exceeding EU limits include Cardiff, Swansea, Port Talbot, Newport, Chepstow and Wrexham.

Following completion of the monitoring work in Cardiff, SRS has had requests for the data from a number of organisations, and are keen for the work to be publicised as widely as possible. Highlighting the importance of citizen engagement, the SRS Specialist Services Officer says: “A wide variety of potential measures are available to combat air pollution in Cardiff, but many involve inconvenience for members of the public and cost to the public purse, so we need those affected to be on-board with the measures being taken. We are also hoping that the public will be keen to help, by participating in car-share schemes for example.”


Learn more about AQMesh.

Visit UK AQMesh distributor Air Monitors Ltd.

Read more AQMesh news.

Traffic pollution in office buildings drives innovative indoor-outdoor air quality management

AQMesh small sensor air quality monitoring system measuring indoor air qualityExtensive research has shown that indoor air quality is often worse than outdoors. Closed system buildings trap harmful particles inside, and external air intakes can bring in more polluted air from outside.

Whilst many heating, ventilation and air conditioning systems (HVAC) use particle filtering, managed through air exchanges, they can often worsen levels of polluting gases, such as NO2 – now classified by the World Health Organisation as a Class 1 carcinogen. Natural ventilation systems have no particulate filtration at all, and buildings are also frequently completely shut up all night with no ventilation running, trapping the pollution that has built up over the day.

Unlike outdoor air quality (which the government is responsible for), indoor air quality is the responsibility of the building owner or manager, and with research proving that poor air quality has a significant impact on human health, air pollution should be a key factor of employee health & safety.

Future Decisions has teamed up with AQMesh and UK distributor, Air Monitors Ltd, to supply pollution mitigation to improve indoor air quality. Future Decisions has developed patented smart management strategies that aim to reduce internal air pollution by 30% – this is usually enough to bring the air quality within UK & EU regulatory levels, and often within the World Health Organisation levels.

AQMesh measures NO, NO2, O3, NOx, CO, CO2, SO2, PM1, PM2.5, PM10, temperature, pressure and relative humidity in a small pod which can be mounted both indoors and outdoors on a wall or post. Batteries, solar power and DC power options give flexibility of mounting anywhere. AQMesh was designed to offer an easy-to-use air quality monitoring system that can deliver localised real-time readings, improving the accuracy and scope of gathering air quality data in order to support initiatives to reduce air pollution and its risk to human health.


More about pollution mitigation from Future Decisions.

Visit UK AQMesh distributor Air Monitors Ltd.

Learn more about AQMesh.

MPCA AQMesh small sensor AQ network takes shape in Minneapolis – St. Paul

Minnesota Pollution Control Agency (MPCA) has purchased fifty AQMesh pods to measure key air pollution gases and particulate matter across fifty different zip code areas. These small sensor air quality monitoring systems measure NO, NO2, O3, CO, SO2, PM1, PM2.5, PM10, temperature, pressure and relative humidity and will be installed – one per zip code – around the twin cities of Minneapolis and Saint Paul. The two-year project, funded by a legislative grant*, is to supplement the air quality information available to the public.

Map showing intended deployment of 50 AQMesh pods for MPCADeployment across the 50 zip codes has been mapped out after several public meetings involving the local community to determine where residents felt monitoring was needed. The small yellow triangles represent the points which local residents asked for sensors to be installed, and the green dots indicate the planned installation site based on the infrastructure available for mounting the AQMesh pods.

“This project is about understanding small-scale differences in air pollution in urban areas in order to minimise exposure to harmful air pollutants, particularly for vulnerable communities. The Assessing Urban Air Quality project will use new air monitoring sensors to broaden our knowledge about air quality in Minneapolis and St. Paul”, commented Monika Vadali, Ph.D, who is leading the project.

The pods are currently installed at the Blaine airport Federal Equivalent Method (FEM) station so that AQMesh readings can be compared to and validated against air quality readings taken using this US approved methodology, with scaling then applied if necessary. The MPCA team intends to install the pods in each zip code during the next month or two. The pods will be powered using a bespoke solar power pack: 30W panels have been specified for such a northern location, compared to the 15W normally required to supply the low-power AQMesh platform. The pods can be battery powered but 12V DC supply was specified, given the 2-year project timescale.

25 co-located pods with NO2 scaled to FEM MPCAThe pods were installed in November 2017 and have achieved 100% uptime to date, including during severe weather conditions, with temperatures below -25°C / -15°F and heavy snow. Initial comparisons against co-located pods show a high level of pod-to-pod precision, with an average R2 of 0.94 for NO2, 0.92 for O3 and 0.93 for PM2.5.

The 50 pods have been compared to the FEM station in two batches of 25, and the first batch of comparisons show an average co-location comparison correlation R2 of 0.74 for O3 and NO2, 0.86 for PM2.5, 0.93 for PM10 and 0.82 for NO. The reference CO showed a baseline shift part way through the comparison period, so that comparison is being reviewed. The SO2 R2 was depressed by a max FEM reading of 2.5ppb, with low FEM resolution, but AQMesh readings were within +/- 2ppb of reference.25 co-located AQMesh pods with PM10 scaled to FEM MPCA

The MPCA team is setting up an API connection to the AQMesh server, allowing air quality data to be streamed, near real-time, to the MPCA server, from which it can be published.

AQMesh is in use at various locations in the USA, as well as 35 other countries. The pods deployed in Minnesota are the current production version (v4.2.3).

More information about the MPCA project is available at

* The project is funded by a legislative grant: Environment and Natural Resources Trust Fund (ENRTF) M.L. 2017, Chp.96, Sec. 2. Subd.07b


More information about the MPCA project.

Learn more about AQMesh.

Read more AQMesh news.

Smart cities risk reputation with poor air quality data

AQMesh air quality monitoring system measuring employee exposure to diesel fumesThe team at AQMesh continue to receive many enquiries from smart city initiatives and are concerned that integrators risk undermining entire projects by distributing meaningless or misleading air quality information.

“Many of the people I speak to are used to dealing with sensors that are easy to ‘plug and play’ and expect to be able to do the same with air quality sensors. This is not helped by the fact that most air quality sensors, sensor systems or ‘nodes’, on the face of it, offer very similar specifications”, comments Amanda Billingsley, AQMesh Director. “Quite understandably, IoT professionals do not generally have a background in air quality measurement and are not aware how notoriously difficult it is to get good air quality readings from small sensors, particularly nitrogen dioxide which is known to be so harmful and a key component of diesel fumes – now classified by WHO as a carcinogen.”

Most of the air quality sensors that are small, cheap and low enough energy for IoT applications also have limitations, such as the influence of rapidly changing temperature and cross-gas effects, and a significant level of experience is required to apply the corrections needed to get useable real-time air quality data. At this stage there are two options: one is to try to deal with the challenge in the measurement hardware, such as managing the conditions in which the sensors operate, but this often leads to large and expensive hardware. The other option is smart cloud-based correction algorithms.

Because of the length of time it has been in the field and the huge variation in environments in which AQMesh has been used and validated / corrected, AQMesh is acknowledged through independent studies to be further down this route than any other small sensor system. Even smart city projects which aim to deliver ‘high level’ air quality information, such as ‘the air quality is better here than there’ or some traffic light system, need to be confident that such conclusions are correct if they are not to be challenged by local authorities and stakeholders.

AQMesh is being used in various smart city and IoT projects around the world. In a collaborative smart city project in Cambridge, UK, AQMesh data was analysed by Professor Rod Jones from the University of Cambridge. “Because we know that all the pods read the same and because we have a comparison between one pod and a reference instrument we can say that all pods are working equivalently across the city. What we are seeing is correspondences in excess of 0.7, 0.8, against reference – and that is very good for straight out of the box”, commented Professor Jones.” The study shows that AQMesh can help cities manage air quality, for example by distinguishing between locally and regionally generated pollution, as well as publishing air quality information for the public.

AQMesh measures NO, NO2, O3, NOx, CO, SO2, PM1, PM2.5, PM10, temperature, pressure and relative humidity in a small pod which can be mounted in a post, on a wall, outdoor or indoor. Batteries, solar power or 12V DC power options give flexibility of mounting to capture air quality data from any point in a smart city or elsewhere.


More about the project in Cambridge.

Learn more about AQMesh.

Read more AQMesh news.

AQMesh monitors the impact of new Oxford shopping centre on local air quality

AQMesh monitors impact of new shopping centre in OxfordOxford City Council has been managing two AQMesh pods, supplied by Air Monitors Ltd, in order to monitor the impact the new Westgate centre is having on local air quality.

Westgate Oxford is a brand new £440m shopping centre comprising of retail outlets, restaurants and a cinema, and was developed as a replacement to the old shopping centre that was demolished in 2016. Having recently opened in October 2017, it estimates it will attract 15m visitors every year.

The AQMesh pods were purchased by the Westgate developer under a Section 106 agreement to monitor levels of NO, NO2 and O3. Oxford City Council’s Air Quality officer, Pedro Abreu, has been using them to supplement information available from other sources. Because the pods are battery-powered they can be mounted at exactly the point in centre where monitoring is required, and easily moved to a new monitoring location when necessary. Pedro Abreu carried out co-location comparisons with a reference station and is very satisfied with the correlations he has seen with the AQMesh pods he is using.

His comments echo those of Professor Rod Jones from the University of Cambridge, who led a project using AQMesh pods across Cambridge to demonstrate how air quality varies across the city. “Because we know that all the pods read the same and because we have a comparison between one pod and a reference instrument, we can say that all pods are working equivalently across the city. What we are seeing is correspondences in excess of 0.7, 0.8, against reference – and that is very good for something straight out of the box”, commented Professor Jones.


Browse AQMesh co-location comparison trial results.

Read more on the Cambridge project.

Visit UK AQMesh distributor Air Monitors Ltd.


AQMesh measures SO2 and PM from Nicaragua volcano

AQMesh air quality monitoring system used to monitor SO2 from volcanoAQMesh is currently in use in Nicaragua, monitoring air quality in communities living near Masaya volcano. The six AQMesh pods have been used to show variations in volcanogenic SO2 and PM levels at different times and at different locations across the area.

The pods, which have independent power and communications so they can be mounted where required, were installed in March 2017 as part of a research project funded by the Global Challenges Research Fund: Unseen but not unfelt: resilience to persistent volcanic emissions (UNRESP). The project is led by the University of Leeds and is a multi-partner collaboration of several universities in the UK and Nicaragua, as well as Nicaragua’s natural hazards observatory INETER and the Icelandic Met Office.

The Global Challenges Research Fund supports projects focusing on challenges faced by developing countries, aiming to build resilience to natural and anthropogenic hazards. The aim of UNRESP project is to devise an early warning system for dangerously high levels of air pollution, specifically SO2 and particulate matter. As this is a 12-month foundation phase project, the data are not currently being made public but will be put in the hands of local authorities and other stakeholders when the warning system is refined. AQMesh readings are being compared to predictions from a pollution dispersion model, CALPUFF, which requires relatively little computing power. The CALPUFF model has been successfully used for air pollution forecasting at other volcanic sites, such as a recent eruption in Iceland which did not produce ash but emitted twice as much SO2 as all European Union countries combined and caused repeated air pollution in Iceland for 6 months.

“Air pollution is a chronic and serious hazard affecting many developing countries, but there is generally very limited capability to monitor and mitigate it. AQMesh provided us with an opportunity to install the first AQ monitoring system in Nicaragua – the pods are very cost-effective which is of utmost importance for the local setting, yet they provide data that are of high quality. Real-time data on the ground is vital for quantifying and understanding the duration, peak concentration and frequency of high air pollution episodes, which are factors that directly impact human health”, commented Dr. Evgenia Ilyinskaya who is leading the project. The UNRESP team started by hiring five pods for three months via UK distributor, Air Monitors Ltd. as well as purchasing one AQMesh pod for long-term observations. The pod rental has been extended for another three months and the practicality of long-term use of this sort of equipment is being evaluated, including the use of rechargeable batteries or solar power. The team is working closely with local communities and such stakeholders taking custody of the equipment intended to protect their own community mitigates against some risks, such as theft or damage.

Although there is no reference station at the site, diffusion tubes have been used to take measurements which can be compared to the 15-minute average, real-time readings from AQMesh. Whilst EU air quality standards focus on the short-term high concentrations typical of SO2 from an industrial source the UNRESP team is trying to understand the impact of long-term elevated SO2 on the population. Having SO2 measurements with high time and spatial resolution is critical for this and the plan is to potentially create an alert for accumulated concentration of pollutants.

The draft proposal for a follow-on project at the site states the collaboration with AQMesh identified ways of improving the equipment for monitoring volcanogenic pollution, which tends to be much more corrosive than ‘typical’ urban pollution. Dr. Evgenia Ilyinskaya commented, “the AQMesh equipment is extremely cost-effective while providing data quality comparable with EU-certified monitoring. One AQMET station was purchased during the UNRESP foundation phase and it will remain in Nicaragua to form part of the permanent AQ network.”


Follow UNRESP project on Twitter.

Learn more about AQMesh.

Read more AQMesh news.

The challenges and benefits of local air quality monitoring

A new generation of air quality monitors is now being offered to provide localised, real-time air quality readings – but the potential benefit is only just starting to be realised.

It is generally accepted that whilst measurements from air quality reference stations are highly accurate, they are not sufficiently location-specific. Key pollutants – such as NO2 and PM2.5 – vary dramatically over short distances and time intervals, but the large size, maintenance requirements and relatively high cost of reference equipment limits the places it can be installed. Diffusion tubes can offer a very cheap alternative and are much easier to install in specific locations, however they only offer a single reading over a number of weeks, and air quality professionals therefore rely on modelling techniques to fill the gaps. With research continuing to prove the extent to which air pollution varies significantly over space and time, the answer would be a reliable and accurate tool for taking real-time, localised measurements.

A number of new low-cost air quality monitoring systems are available, each with benefits and shortcomings. It is fair to say that the available sensors, whether electrochemical, optical or metal oxide, are all working at or close to their limit of detection to provide the low ppb or µg/m3 level of sensitivity required for any of the common ambient air quality applications. However, several systems offered for these applications provide readings in ppm or even % level readings – which clearly makes them inappropriate for ambient air monitoring. Some are also not fit for long-term outdoor use, as they are not fully weather proof or cannot cope with the expected temperature ranges. However, at least one system – AQMesh – does operate across a wide range of conditions and territories, so having established that a viable product exists, can it deliver the accuracy required?

Performance is clearly a major consideration for any user and comparing readings from a lower cost system against a reference station is the obvious place to start. One immediate challenge is ensuring meaningful results. Particularly in roadside applications or where there is an immediate source of pollution, all sensors and intakes must be within a metre of each other and at an equal distance from the immediate source. Most sensors, not unreasonably, also require an uninterrupted air flow around them – mounting immediately above hot or wet surfaces will not give accurate readings. On the other hand, some limitations of reference equipment come to the fore when comparing with a different type of measurement. For example, single channel NOx analysers switch between measuring NO and NOx, calculating NO2 as the difference. This switching can have dramatic effects on readings for the two gases (which are measured separately and directly by other sensors) at short reading intervals, such as 1 minute. Similarly, any differences in clock synchronisation or reading averaging protocol (time beginning or time ending) can make the difference between a regression comparison R2 of 0.9 and 0.1, which can render comparisons meaningless.

Comparisons of particulate measurements are also problematic due to the range of reference-equivalent methods available and the limitations, in many ways, of the reference method itself. Since the expanded uncertainty of the reference equivalent measurements for PM10 and PM2.5 allows up to 25%, this should be borne in mind when making comparisons with lower cost particulate sensors. Overall, for both gases and particulate matter, if several identical low cost systems are co-located, the user should expect a high level of repeatability (R2 > 0.9) and should expect to be able to adjust accuracy by ‘calibrating’ – adjusting slope and offset – against a co-located reference/equivalent station. Some systems, such as AQMesh, then allow this scaling adjustment to be applied automatically to all future readings, minimising the need for manual data correction. Access to a calibrated reference station and careful co-location is currently key to getting value out of any of the current generation of emerging sensor systems, although the objective of good accuracy without the need for a reference station is being actively pursued.

About AQMeshCalibration through co-location

First questions about these systems often include ‘How do I run gas through it to calibrate it?’ and ‘Can I calibrate (or test) it in the laboratory?’ In systems such as AQMesh the air sample is not pumped, for good power-saving reasons (low power is essential for battery operation), and so it is not obvious how a conventional gas calibration would work. More importantly, although the sensors generally do give very good results in laboratory tests with known dry, single gases, these bear no relation to real ambient field measurements with a combination of damp, humid gases at potentially varying temperature and pressure. Overall, there is no proven substitute for co-location with a reference station. Even with all of these considerations, some of these small, lower cost air quality systems, such as AQMesh, can deliver very impressive comparison results and provide a new source of air quality data. Those with in-built power and communications offer genuine freedom to gather measurements from any location and research teams worldwide are using such systems to understand pollution around cities, inside and outside buildings, at different heights, in street canyons, around industrial facilities and within neighbourhoods, at different times of day, and so on. This new granularity of measurement and flexibility of location gives air quality management teams a real tool to carry out ‘before and after’ studies and evaluate a range of policy or pollution mitigation activities. Where a number of sensor systems are used, and particularly in combination with wind speed and direction information, the relative measurements and source distribution can provide very powerful insights about where to target pollution mitigation activity.

One such low cost outdoor air quality monitoring system offering this type of flexibility is AQMesh, which has proven its repeatability, accuracy and performance through a series of these careful co-location comparisons with calibrated reference stations in a variety of global locations and applications. The small size, battery power and wireless communications technology mean users can benefit from reliable and accurate real-time, localised air quality measurements in a broad range of studies.

How accurate is ‘accurate’?

One area of discussion is what level of accuracy is ‘good enough’. Although this depends on the application, it is still tempting to look for a very high level of agreement between the low cost sensor system and reference equipment. Whilst this may be the goal, the lower cost systems are considerably cheaper and have the benefit of being correctly located so perhaps it is better to have slightly less accurate readings from the right location than highly accurate readings from the wrong location? For some applications it is really only the relative readings which are required, and systems like AQMesh provide very high levels of precision between identical systems. Or it may only be appropriate to provide a ‘traffic light’ indication for communicating air quality to the public. Until more general guidance is available, users will have to take a view on accuracy relevant to their application.

Publishing air quality data

Another area of confusion is regarding data privacy vs online publication of air quality data. Most of the new air quality systems take advantage of remote data management and online access. This makes sense for a number of reasons. Hard-wired communications infrastructure is a barrier to freedom of location and new systems generally communicate either using the mobile network, radio or wi-fi. Online access to data is also very convenient and less resource hungry. Few of us who readily use mobile phones, online banking and many of the commonplace applications of modern life fully understand security of communications and the reality of data hosting. The bottom line is that air quality data from sensor systems using wireless communications can be as secure as any other online application. Confusion is caused by the systems which are focused on citizen engagement and offer automated sharing and publication of data, but these are the exception and in most cases, such as AQMesh, data is private and secure.

The new generationAQMesh pod

Current low cost air quality sensor systems are a very mixed bag. Some products may well appear to offer the same measurements and even claimed accuracy as the more thoroughly developed and tested systems and the user has little choice but to ask searching questions and ask for demonstration of performance and reference projects before purchasing. But the need for such systems is clear and performance is already good enough for many leading institutions and organisations to be actively using the technology. Sensor and sensor system manufacturers are seizing on every new shared comparison dataset and development in technology to make further improvements. The insights that these sensor systems can offer are real and relevant and there is no substitute for trying the technology in any given application to see what it can offer. Many users have found that one insight can lead to another and, working with a clear understanding of the strengths and weaknesses of the systems, the benefits of making a start with this new tool are overwhelming.