Explore AQMesh

SEPA monitors impact of gas flaring on air quality

23-May-2024Fenceline | Gas flaring | Industrial | Oil & Gas | PetrochemicalUK

SEPA monitors impact of gas flaring on air quality

Air quality monitoring stations have been used by the Scottish Environment Protection Agency (SEPA) to form a new air quality monitoring network around the Mossmorran Complex near Cowdenbeath and Lochgelly, Fife.

The network of 8 AQMesh pods was deployed in addition to a fixed air quality monitoring station to help address the concerns of the local community about the impact of operational activity at ExxonMobil Chemical Limited Natural Liquids Plant and Fife Ethylene Plant in Fife, Scotland. Both plants use flaring processes to burn off excess gas, and SEPA set out a series of regulations aimed at reducing the amount – and impact – of flaring, as well as being able to provide local residents with accurate, real-time information about pollution levels in the wider community.

Commenting on using the AQMesh pods, SEPA have stated that “these analysers are easier to locate than the reference analysers due to their size and power requirements and can be installed in more accessible locations. They are useful in assessing short-term trends in pollutants; provide greater geographical coverage both up and down wind of the site; and monitor for a wider range of pollutants.”

So far, all the pods and fixed station continue to show that there have been no breaches of any air quality standards since monitoring began.

The quality of the data produced by the AQMesh pods at the Mossmorran facility has been optimised using a proprietary network calibration method known as ‘long distance scaling’, which identifies and separates hyperlocal events from individual pods in order to determine the common pollutant trends seen on each pod in the network. These data trends are then directly comparable on each pod, showing the background/baseline pollution levels across the network and can also be used to provide calibration – or scaling – factors that can be applied to each pod. The method is similar to that developed by Professor Rod Jones of the University of Cambridge, which was used for calibration and quality control of 100 AQMesh pods in the Breathe London pilot.

For more information about SEPA’s air quality monitoring network at Mossmorran, or about AQMesh, contact us today.

Looking behind the scenes of dust & PM monitoring

20-May-2024Industrial | Particle monitoring | PM | Product

Looking behind the scenes of dust & PM monitoring

Measuring particulate matter (PM) accurately comes with a number of challenges, including effects from humidity and differing particle sizes. Technological considerations are also a factor, such as variable sample flow rates and the physical size and diameter of the sample path, which could affect the number of particles able to be measured.

AQMesh has been able to overcome many of these challenges through its proprietary OPC development, making it a robust, reliable and accurate solution for PM monitoring. From sample inlet to final data output, each design requirement for precise measurement of particles in ambient air has been carefully thought out to result in a truly bespoke and fit-for-purpose optical particle counter (OPC) – a solution that only AQMesh can offer. There are a few key aspects:-

Active sampling using a pump

By using a pump instead of a fan, the AQMesh OPC samples at a steady flow rate from the inlet to sensor, which provides a more consistent air sample than other methods used. Systems which use fans run the risk of creating vacuums, which can interrupt the flow rate and affect the sample measurement.

Laser-focused

A funnelled inlet helps the OPC taper the particle samples to a focal point, and then a straight line sample path from this focal point to the laser bench means larger particles are not ‘stuck’ in a bend and ensures all particles within the sample pass through the laser path, allowing for complete capture of particles, categorised by diameter from 0.3 – 30um. This means the laser OPC in AQMesh gives a true PM10 measurement, which many systems – including nephelometers – cannot offer.

Heating the sample to reduce deliquescence

The optional heated inlet allows AQMesh to reduce the effects of humidity on particle sizes. Known as deliquescence, this effect can make particles larger in diameter due to the absorption of moisture. The heated inlet overcomes this by drying the sample as it is drawn in, bringing the particles back down to their true size and therefore resulting in more accurate measurement. Additionally, AQMesh can detect when deliquescence is likely to have happened during data processing and can ‘flag’ the data point – including with non-heated samples – allowing it to be easily identified and redacted. Use of the heated inlet results in less than 1% of data points being flagged in this way.

Autonomous power for uninterrupted sampling

Using AQMesh’s bespoke smart solar pack for autonomous power allows for uninterrupted PM monitoring, with no need to change the sampling regime to take fewer readings – a process which could potentially void an instrument’s MCERTS certification. The AQMesh solar pack provides consistent, smooth power all year round for AQMesh pods.

Minimal maintenance

Other benefits of the AQMesh OPC include reduced maintenance – there is no need to change any filters, and there is no need to replace the whole OPC unit when it requires servicing. We simply advise the pump and laser is replaced every two years, which can be carried out by the user without returning the instrument to factory. Exceedance alerts can also be set for PM fractions, alongside any other pollutants being measured, which enable users to receive immediate information if levels breach a user-defined level over a user-defined period.

MCERTS indicative

AQMesh has been accurately measuring PM for over 10 years, and offers the added reassurance of MCERTS Indicative measurements for PM2.5 and PM10.

For more information on how AQMesh can support your PM monitoring requirements, contact our experienced team today.

Supporting your air quality monitoring system when you can’t get to it

24-Apr-2024Fenceline | Hybrid networks | Industrial | Networks | Product | Support

Supporting your air quality monitoring system when you can’t get to it

Each time we think we have found a spectacularly remote monitoring location, an even more inaccessible spot is reported by one of our users. Full-day trips to visit a location have now been beaten by customers who need to charter a plane to reach them. So, remote diagnostics and support are very important.

Luckily, IoT communications, cloud data management and over 10 years of experience supporting AQMesh have allowed us to continually improve our ability to supply and support AQMesh in remote locations. Pods have been used from the edges of the arctic to undeveloped deserts – as well as on ships – with the help of a few features.

Robust design, low maintenance intervals

AQMesh was designed to be rugged, for use all over the world and with an expected maintenance interval of two years. We have always understood that field maintenance requirements must be kept to a minimum, and pods operating for year after year, in the harshest environments – from deserts to extreme cold – demonstrate design effectiveness. This includes protecting electronics from the elements and mitigating electromagnetic interferences, as well as taking measures to keep insects, wildlife and birds out/off.  The unobtrusive pod design has also ensured a very low rate of vandalism and theft.

QA flags and notifications

The AQMesh data stream includes vital pieces of information which allow users and the AQMesh support team to check that pods are functioning correctly and provide an early warning system. Users can register for email notifications for their pods – it is always better to find out that power is running low or data is no longer being transmitted at the time, rather than when the project ends and it’s time to review data.

Remote scaling / calibration

Whilst AQMesh was a leader in co-location comparison and the ‘gold pod’ technique for in-field calibration, these approaches do require regular site visits to move pods around. We have now developed a method that can provide remote calibration of a sensor network, with or without an available reference station, that does not rely on artificial intelligence.

Diagnostic information

The AQMesh team can access additional diagnostic information remotely, such as performance indicators from the optical particle counter, solar pack battery voltage or sensor failures. Some of these indicators are available to users via their secure online or API access, and some can be used by our global technical support team. The team uses the full range of diagnostic information available, including SIM connection attempts, to provide free support for the life of the equipment. Their over-riding goal is to fix any problem without asking users to visit the site.

Over the wire intervention and updates

AQMesh firmware developments now allow power cycles to be triggered remotely, firmware to be updated over the wire or remote sampling and transmissions interval changed.

Power

We have learned from the many challenges that power supplies can present to remote operation. Whilst the original lithium thionyl chloride battery offered unbeaten long-term autonomous operation of gas sensors, increasing shipping limitations have turned our focus to direct power supply and solar. We invested in a full technical investigation to identify a mains to 12V DC transformer that could cope with ‘dirty’ power supplies, as well as in-pod measures to manage spiky or intermittent power.

Having seen so many problems from simple solar-panel-plus-battery arrangements, we designed our own smart solar pack, which squeezes the most power out of any location, manages power delivery and provides online voltage measurements. We are mindful that sampling and reading rates are defined by the project – and potentially certification – and the power supply must deliver the same sampling throughout the year. Readings should not be compromised by the difficulty of providing autonomous power.

Communications

The global SIM supplied with a standard AQMesh pod will roam across networks to find the best connection at each transmission, and has proven to be a very reliable way of transferring sensor output from hardware to our cloud server for over 10 years in more than 70 countries. Occasionally, we find that only a single, specific network is available – or a customer would prefer to use their own SIM – in which case we can programme the pod to work with a locally-sourced SIM contract. To achieve autonomous communication, the AQMesh LTE CAT M1 modem uses the latest LTE communications standard, including support for NB-IoT where available. In the most extreme cases, satellite communication is the only viable option and AQMesh can connect via an ethernet port to a suitable modem to connect this way. Reliable communications are key to remote data access and support.

The growing need for remote, long-term monitoring, in all conditions, drives our continuous development from data QA to comms, and we welcome challenges.

Anodes and anemometers for harsh winter air quality monitoring

11-Mar-2024Accuracy | Fenceline | Industrial | Networks | ProductIceland

Anodes and anemometers for harsh winter air quality monitoring

We are often asked by customers whether AQMesh can operate in cold conditions. Long-term use at temperatures well below freezing, with ice and snowfall, is indeed challenging. Cold weather operation has been key to AQMesh – improved upon and proven in the field – for over 10 years. The main features, described below, have been most recently been put to the test in Iceland.

Ölfus, a municipality in Iceland, installed a number of AQMesh pods during December to measure local air quality across the town in relation to the region’s volcanic activity. The pods – supported by Vista, AQMesh distributor for Iceland – will monitor NO, NO2, CO, H2S, SO2 and particulate matter and report the data to the local Environment Agency.

A monitoring network has also been recently installed on a construction site in Reykjavík, measuring dust (PM), NO, NO2, NOx and wind speed and direction, powered by the smart solar pack. AQMesh was chosen because of successful performance in previous deployments in Iceland, as well as ease of installation and minimal maintenance requirements.

The successful operation of AQMesh pods in extremely cold temperatures can be attributed two main factors: power management and weatherproof design.

Power management

Many small sensor air quality monitoring systems use lithium batteries, which carry a recommendation for use only down to 15°C. Lithium ion batteries should not be charged below 0°C – there are risks in trying to do so – and performance is also significantly poorer at low temperatures. This is because lithium ions can plate the anode surface in freezing conditions, reducing battery capacity and increasing resistance.

The AQMesh solar pack uses the heavier but more practical 22Ah lead acid battery, which performs reliably in such temperatures. The AQMesh battery has 264Wh capacity, compared to lithium-based systems which store less than 100Wh solar power. With the battery built into the smart solar pack, capable of powering the pod for 1.5 to 2 weeks without sunlight, the pod can be powered at full capacity over the whole year at surprisingly high and low latitudes. This is particularly significant for relatively power-hungry sampling of PM: AQMesh will continue to sample at the optimal rate and not reduce sampling, which would deviate from MCERTS test conditions, voiding certification. Lead acid batteries are also easier to ship than lithium: a major consideration if you are moving pods around the UK or internationally.

Weatherproof design

Simple design considerations can be vital. Right from the first deployments across North America and Scandinavia, AQMesh design has shown that equipment cannot just survive but provide full functionality through a harsh winter, without maintenance visits. The shape of the pods prevents water, ice and snow building up on the surface, and there are no moving parts that can be affected by freezing temperatures. The AQMesh wind speed and direction sensor option is an ultrasonic anemometer, with no moving parts to wear or recalibrate, making it reliable and low maintenance.

AQMesh pods use a pump for drawing in particles, as opposed to a fan. Fans are more likely to be affected by snow and ice, potentially recirculating the same air if even partially blocked, whereas a pump will still actively draw an air sample.

Data processing on the secure AQMeshData.net server uses correction algorithms based on over 10 years of real-world testing which can compensate for extreme environmental conditions and flag affected data points if necessary.

A network of 50 AQMesh pods in Minnesota, USA, continues to operate smoothly in temperatures as low as -25°C, despite the area being under several feet of snow for long periods of the year. Other deployments include Alaska, Mongolia and Scandinavian regions, all of which experience harsh winter conditions.

For more information and to discuss your potential air quality network deployment contact our experienced team today.

Check H2S, SO2 and VOC emissions continuously around your sites

06-Mar-2024Fenceline | Industrial | Oil & Gas | Perimeter

Check H2S, SO2 and VOC emissions continuously around your sites

If you are responsible for air pollution around an oil, gas or industrial site, you have a range of options at different price points. AQMesh offers a cost-effective way to continuously monitor ambient air quality, as frequently as every minute, with readings accessed securely online and user-settable alerts. This system offers an ideal, confidential first step to understanding whether you – or your neighbours – have an emissions problem, particularly as the equipment is available on a rental basis, anywhere in the world.

AQMesh has been used in a wide range of applications – from the coldest to hottest conditions – for over ten years, and 15 different pollutant and environmental measurements can be provided by a single pod, using bespoke sensor configurations. The most popular measurements for petrochemical customers are hydrogen sulphide, sulphur dioxide and volatile organic compounds.

H2S, SO2 and TVOC – including EtO – can be measured down to single figure ppb, with a high level of accuracy, and CO2 readings provide a real-time, accurate measurement of local combustion. AQMesh pods can be quickly and easily deployed around petrochemical fence lines, landfill boundaries, wastewater site perimeters and around mining facilities to provide completely confidential real-time air pollution data.

One requirement we see regularly is for monitoring around vulnerable communities, such as housing areas or schools, to understand potential exposure. Pods are being used in a variety of oil & gas, manufacturing and processing applications to detect and identify sources of pollution and inform potential mitigation strategies. Although not a regulatory instrument – so readings are not generally reportable – various data management techniques can offer traceability back to an approved methodology, providing data quality assurance.

UK local authority uses AQMesh for cost-saving NO2 monitoring network

28-Feb-2024Accuracy | Hybrid networks | Local authorities | Networks | PerformanceUK

UK local authority uses AQMesh for cost-saving NO2 monitoring network

A UK local authority installed nine AQMesh systems at different points across a busy town, measuring nitrogen dioxide (NO2) at 15 minute intervals, monitoring 24/7. These locations were established monitoring points, where measurements had been taken previously using diffusion tubes, limited to one average reading every few weeks.

AQMesh – in common with all lower cost air quality systems – can provide near real-time air quality information, with high frequency measurements that allow daily and weekly patterns to be seen. However such systems are not certified, as are reference stations or diffusion tubes. As a result, AQMesh readings need to be ‘calibrated’ against certified readings, at some point in the network, to provide confidence in data accuracy and traceability to an approved standard.

Typically such ‘calibration’ is carried out by mounting at least one AQMesh ‘pod’ very close to a reference station, so pod and reference are sampling the same air and readings can be compared. However this approach does require staff to move pods from position to position, which can be time-consuming and therefore costly. An alternative approach was used for this network, similar to the one developed by the University of Cambridge and used in a major project in London (Breathe London pilot). One of the authority’s reference stations (location in red on map) was used to ‘calibrate’ the network of pods and the other (location in green on map) was used to cross-check network accuracy.

AQMesh network deployment (BELOW): AQMesh locations marked in blue, reference station used for calibration in red, reference station used for control co-location in green

The four-month project demonstrated that the AQMesh network showed that stakeholders could have the same high confidence in readings when the network was calibrated remotely as when pods were co-located for calibration (the gold standard for this technology), but with significant savings in field support and reduced data loss.

Six hidden costs to look out for when choosing a small sensor air quality monitoring system

14-Feb-2024Construction | Environmental | Fenceline | Industrial | Local authorities | Mining | Networks | Oil & Gas

Six hidden costs to look out for when choosing a small sensor air quality monitoring system

Anybody in the market for purchasing a small sensor air pollution monitoring system will need to consider budgets, but it’s not always obvious how the products being reviewed actually compare across their full operational life. A small sensor air quality monitoring system or network can be a significant purchase, so whether project-based or with ongoing monitoring in mind, it is likely that the equipment will be in use for several years. There are six main areas of cost highlighted here, all of which kick in after initial purchase.

Without direct experience of a product, it’s natural that the focus is on the initial price tag, but that may only reveal part of the total cost. The weeks or even months spent researching products is a fraction of the time – up to 10 years – of expected product use and experience. A typical timeline of product experience will start pre-sale and run through installation, project set-up and data access arrangements, data quality assurance, planned and unplanned maintenance, co-locations and re-locations, updates, upgrades, reconfiguration, and so on. How much will you have spent – directly or indirectly – by the end of the product’s life?

Over the product’s span of operation, hidden costs can include:

  1. ‘Boots on the ground’ – field staff for installation, co-location, maintenance, repairs, product replacements, and so on. Some of this will be essential, but it can add huge cost if uncontrolled, particularly if units are installed far away from the team’s base.
  2. Consumables – sensors need to be replaced periodically, but how often and at what cost? Some systems require that sensors are replaced after a short time, can only be replaced as part of a multi-sensor cartridge, are very expensive, or a combination of these.
  3. Data services – whilst the charge is to cover the real cost of data processing and storage (not access), annual data prices vary considerably and add up over the years.
  4. SIM – an annual charge for a global SIM to connect the unit to a server is often cost-effective and convenient, but charges vary. This may depend on where in the world the unit is installed, but it’s worth checking prices and whether you have the option to use a local SIM, if that would be cheaper.
  5. Support – what is included in support? Is it limited in any way? Ask for examples of committed support of networks in challenging situations, well after year one.
  6. Length of warranty – this is a clear commitment from the manufacturer of what you should expect from their product: putting their money where their mouth is.

We have worked out that for two of the most popular AQMesh models (or specification) other products may be as much as 29% cheaper than AQMesh at initial purchase, but that flips to 31% to 70% more expensive overall – including the initial purchase – after five years of use. This is based on quoted consumables, data and SIM costs, so there may be even more indirect costs that we have not included in our calculation. Whilst these additional costs can possibly be accommodated within budgets for a small number of pods, hidden costs can scale at a rather alarming rate for larger networks.

It’s also worth checking how much flexibility you may have in the future:

  • You may only be able to renew data services if you purchase replacement sensors
  • Support may be limited in some way
  • You may not be able to use a SIM of your choice

Your expectation of the product life may be different to the manufacturer’s, and that can apply in both directions. We have been asked to quote AQMesh pods, which we expect to function happily for 10 or more years, by customers who really want to buy a disposable product for a short project. If that is the case, rental is a great option. With all costs wrapped up into a single price, from three months to years at a time, costs are totally predictable and full support ensured, right through to free product replacement, should it be required.

AQMesh pods, with their robust and proven design, are expected to function in the field with minimal intervention for at least 10 years. The pods automatically come with a 5 year manufacturers’ pod warranty. We commit to – and deliver – lifetime remote support, included in the price. Remote firmware and gas processing algorithm upgrades come as part of any purchase, ensuring pods can always be updated to latest and improved versions for free.

The pods are designed to be user-serviceable, meaning only consumable components need to be replaced, rather than expensive cartridges which add cost through packaging and electronics. Consumables and yearly contracts can be purchased up front – with the initial pod order – ensuring visibility and security when it comes to future costs and maintenance, as well as appropriate discounts. Practical maintenance videos ensure that any time spent by your team is as efficient as possible, so you can plan ahead with resources and avoid unexpected demands. The team at AQMesh have been supporting pods in remote locations for over a decade, learning from our experiences along the way to ensure you get the right support exactly when you need it.

Solar power supplies are not all equal for full-year, consistent AQ monitoring

16-Jan-2024Networks | Performance | Power supplies | Product | Solar

Solar power supplies are not all equal for full-year, consistent AQ monitoring

Autonomous power can make all the difference in hyper-local air quality monitoring. With particulate matter sampling needing a little more power than passive gas sensors, solar is the go-to power option, rather than internal battery. Most systems require sufficiently little energy that they can be powered by a relatively small solar panel, but it’s the back-up power management that makes all the difference.

For much of the higher latitudes of Europe and North America, the challenge is to achieve full-year monitoring – just. What we want is to be sure that no readings are missed in December, but that we manage that without a huge solar panel or battery. Most small sensor air quality monitoring systems are mounted up lamp posts, so weight and size (wind resistance) are real considerations. As always, the devil is in the detail. Users should beware of ‘winter sampling’ settings, which reduce PM sampling during low solar power months, meaning each 15 minute reading may be based on as little as one minute of sampling. This is particularly relevant when the sampling regime is linked to certification, such as MCERTS.

The AQMesh smart solar pack power supply option provides consistent, smooth and autonomous power all year round for an AQMesh pod. The pack is much more than just a solar panel, with the true benefit lying in back-up power management: it’s about powering the pod when the sun is not shining.

The solar pack is quick and easy to install – even up a ladder – and comes with flexible mounting options for posts and walls. Guidance is offered for safe, straightforward installation of the pod and ‘all in one’ solar pack, working at height. The solar pack is a compact unit with an adjustable angle for maximum solar harvest. Setting the direction and angle of the panel correctly at installation makes a significant difference to solar yield, even if no further adjustments are made for years. The simple single connection to the pod is the same as that used with the AQMesh standard weatherproof DC power supply, so solar can be easily interchanged with direct mains power, if ever required. The solar pack also features an additional connection to power a second pod at the same time, which helps when co-locating pods for short periods.

Smart functionality allows the charger to efficiently maximise solar harvest, maintaining battery health and extending the life of the battery. Using ultrafast maximum power point tracking (MPPT), the system monitors the voltage and current outputs of the panel to ensure optimum solar harvest during changing weather conditions and light intensity throughout the day. It also features an intelligent load output function with over-charge protection – preventing excessive drain on the batteries – and ensuring that a full 100% recharge will be attempted every day. Charging and battery voltages are among the key pieces of information that can be checked on site using a smart mobile Bluetooth app. Used by AQMesh and customer technicians around the world, quick access to information allows speedy diagnosis of any issues on site, and battery voltage information is also available alongside readings on the secure AQMeshData.net server.

Another consideration is the type of back-up battery used. Many systems use lithium ion batteries, which should not be charged – or re-charged, as a back-up battery – at temperatures below 0°C, with a recommended operating range of 15°C to 35°C, making them unreliable for winter solar back-up. Lithium ion batteries can also be problematic for shipping, with even a small quantity of lithium classed as ‘dangerous goods’, bringing transportation limitations and delays. The AQMesh solar pack uses an AGM lead acid battery, which has sufficient capacity, will continue to operate throughout cold temperatures and is easy to ship and replace.

This efficient solar charger means that even during periods of poor weather, the smart solar pack can power an AQMesh pod consistently – all year round – across the UK and Europe, based on standard measurement settings, with no need to reduce the sampling regime.

From Alberta to Scotland – and many points at lower latitude – AQMesh users around the globe are benefiting from uninterrupted power supply thanks to our bespoke and proven solution for autonomous, wireless power.

University of Cambridge measures seasonal variabilities in air quality in West Africa using AQMesh

28-Nov-2023Community | Networks | Research | UrbanAfrica

University of Cambridge measures seasonal variabilities in air quality in West Africa using AQMesh

It’s great to see the team at the Department of Atmospheric Chemistry, University of Cambridge using their AQMesh pods for another project, this time in Lagos, Nigeria and Yaoundé, Cameroon. The two pods were used as part of a year-long study into the health risks taken by people using open spaces in the cities for physical activity, measuring NO, NO2, O3, CO, CO2, PM2.5, PM10, pressure, temperature and relative humidity.

As there would be no access to reference equipment for data validation in either of the cities, the pods were ‘calibrated’ in Cambridge, before leaving UK (co-located with reference equipment at the Department of Chemistry). The co-location results shown in the paper are pretty good but it’s worth noting that the Cambridge team had chosen to use an older algorithm than was in general use by AQMesh at the time, following the ground-breaking Breathe London pilot study, for which gas algorithm version 5.1 had been used. V5.3 processing gives a further improvement in temperature correction, based on analysis of an ever-extending set of global co-location comparisons with reference.

A previous project had identified the informal places used by Lagos and Yaoundé residents to exercise, including vacant plots of land, next to roads and areas under and next to bridges: spaces with potentially high levels of air pollution. This information was used to choose a suitable monitoring location in each city. As has been observed in many parts of the world, patterns over time – or temporal profiles – can be very different for gases and particulate matter. In this case it seems that particulate matter was travelling long distances to create a dominating background level, with the source attributed to the Harmattan haze: a dry, dusty wind which blows from the Sahara towards western Africa.

The authors of the study concluded that their findings reinforce the need for long-term air quality monitoring to help guide behavioural changes that can protect health while exercising. They were able to offer some useful information, including the observation that weekends and periods outside the rush hour on most days tended to have the best air quality in both cities and so would be the best time for people to take exercise. Air pollution is also generally lower during the wet season, so taking physical exercise in a sheltered, outdoor space would maximise the benefits. It was not referred to in this paper, but the point was made at last month’s ASIC Ghana conference that awareness of the risks of air pollution may be much lower in Africa than in countries where we have been talking about it for longer. As ever, the biggest challenge will be achieving behavioural change.

AQMesh has been used regularly in Africa, and across the globe. For more information visit our website or contact us today.

*Image shows study locations and the installed low-cost air quality sensor devices. (a) Melen Mini-Ferme area, Yaoundé, Cameroon and (b) Admiralty Way, VI, Lagos, Nigeria.

AQMesh used in BEAIR smart pedestrian crossing systems

16-Nov-2023Community | Networks | Smart citiesItaly

AQMesh used in BEAIR smart pedestrian crossing systems

AQMesh is being used in an innovative intelligent pedestrian crossing system being developed by three collaborators across Italy, Israel and Spain.

The Behavioural Enhancement for Air Improvement and Resilience (BEAIR) concept integrates smart lighting, intelligent cameras and AQMesh air quality monitors at pedestrian crossings, as well as an app that offers real-time information on air quality and local traffic. The system is designed to improve safety for both pedestrians and motorists.

The AQMesh pods used in this project measure 6  gases  as well as particles and use the bespoke AQMesh smart solar pack for autonomous power. Data is provided in near-real time via the AQMesh API.

The first pod and smart pedestrian crossing has been installed on a busy street in Genoa, close to the highway, port and subway station and aims to provide a safe and sustainable living environment for Genoa’s citizens.

More information about the BEAIR solution can be found here, and contact the team at AQMesh today to find out how we can support your air quality initiatives.