Explore AQMesh

A rural air quality saga

10-Jan-2024Rural | TrafficUK

A rural air quality saga

We installed an AQMesh pod on a rural road to see the impact of local road closures and increased traffic but we left it in place and have been able to monitor how the air quality changes from autumn to winter. This time covered changing traffic patterns, wood-burning, bonfire night, the Christmas break and then no traffic, with the road closed by floods. So, what did we see?

Of course these various factors do not neatly arrange themselves separately, so elevated PM2.5 and NO2 coincided with both heavy traffic through the village and the cold snap, which would have seen all the local kerosene boilers and wood-burners turned up. NO2 did fall from the weekend before Christmas, coinciding with local road closures ending and commuting pausing, but we are not measuring wind direction and speed on this pod, which may have also had an impact, limiting the conclusions we can draw.

One feature that is most puzzling is how there is still a distinct uplift in NO2 during the day from 2nd January, despite the road being closed. Ah, but looking at NO over the same period suggests that the NOx source is not here. The same is almost certainly true of PM, where off-peak PM never falls below 7µg/m3, showing a distinct baseline, with peaks rarely seeming to relate to local activity.

Other highlights include peaks of most pollutants late on the night of bonfire Saturday (4th November) and the aligned spikes – including noise – on the evening of Friday 1stDecember when traffic was backed up through the hamlet. The endless hours of holiday entertainment perusing air quality readings ..

Installing additional pods would have helped to separate roadside from more background pollution and wind speed and direction monitoring and analysis would have helped to clarify some of the issues here, particularly regarding sources. But a simple project with a single pod gives a huge amount of information – bearing in mind what this information is NOT showing – and is a great basis for further monitoring or identifying potential actions.

Do air quality people love holidays more than everyone else?

12-Dec-2023Environmental | Hybrid networks | Industrial | Networks | Traffic

Do air quality people love holidays more than everyone else?

Everyone loves holidays, whether Christmas or anything else, right? So what’s special about ‘air quality’ people? What we get so excited about are ‘free’ experiments, where distinct changes in activity help to peel away the layers of air pollution measured. Over the years, various studies have been published, showing residual air pollution levels when other sources drop – or increase – significantly.

Around this time of year there are changes in emissions activity around schools, businesses and industry, roads (both increases and decreases), burning of solid fuel in households, domestic heating, and so on. As well as looking at changes in measurement over time (hourly or shorter intervals) and space (hyperlocal monitoring means you can literally measure at any point you wish, from a specific point on a specific road junction to a school playground), measurement of multiple parameters is an eye-opener.

Studies by the University of Cambridge have shown how small sensor air quality measurements can be used in conjunction with their scale separation technique to distinguish between local and regional or background sources. Comparing the proportion of different pollutants in this way can give a ‘fingerprint’. CO2 measurements provide a baseline combustion level against which generally traffic-related NO / NO2 / NOx can be compared. Looking at PM fractions against CO2 and other gases can also provide more insights than individual measurements alone can provide. And, of course, dramatic shifts over time – like holidays – sharpen that focus.

A network of sensor systems has the additional benefit of showing whether pollution is being displaced from one location to another, with this forming part of the analysis around other behavioural change triggers, such as the introduction of a traffic Low Emission Zone (LEZ). It can also help identify hyperlocal sources of pollution, where high levels of pollutants are only seen by one of the monitoring points.

One memorable headline from several years ago was that a higher amount of PM2.5 in one London borough over the Christmas period could be attributed to domestic solid fuel combustion (cosy wood-burners) than road traffic. So, whether it is reduced traffic around schools, increased traffic at shopping centres or chestnuts roasting on all those open fires, the holidays can provide a curious insight to local air quality data and pollution patterns.

Happy holidays from the team at AQMesh.

AQMesh used by Glasgow schools aiming to reduce vehicle pollution

11-Jul-2019Schools | TrafficUK

AQMesh used by Glasgow schools aiming to reduce vehicle pollution

Schools near Glasgow have been monitoring air quality as part of a project aiming to reduce the levels of pollution emitted by vehicles as they drop off and collect children. The project is part of a ‘Beat the Street’ initiative that was granted £50,000 from a new £1million fund to increase walking, cycling and sustainable travel in Scotland. The overall aim is to cut Scotland’s carbon emissions, improve air quality, reverse the trend towards sedentary lifestyles and tackle health inequalities.

The Environmental Health department of East Renfrewshire Council supplied and installed the three AQMesh air quality monitoring pods that were utilised in the project. The monitoring activity followed initiatives in eight schools organised with SEPA, in which the children designed their own air quality banners as part of a competition.

The banners were then placed outside the schools which were then monitored for two weeks with an AQMesh pod measuring a variety of parameters including nitrogen dioxide – one of the pollutants of greatest concern. The Council’s Richard Mowat said: “We used one of our own AQMesh pods and rented the other two from Air Monitors. The pods are small and easy to install so we were able to locate them close to the areas most affected by parents’ vehicles.

“The results clearly showed significant peaks in pollution during the drop-off periods and it was pleasing to note how well the project was received. We hope that this work will help educate the children and that they, in turn, will encourage their parents to leave the cars at home and walk whenever possible.”

Anne-Marie Absolom is Head Teacher at one of the participating schools – St Clares Primary School. She said: “Our Junior Road Safety Officers, and all of the school staff, are delighted that we have had the opportunity to install temporary air quality monitors in our car park.

“We have been campaigning throughout the year to improve air quality in and around our school. The children have also been learning about the small changes that they can make – changes that will make a big difference to the quality of the air we breathe.

“The results from the monitors have highlighted the specific times of day at which air pollution is most significant, and the Junior Road Safety Officers are now campaigning at these times. The data gathered has been shared with all children in the school and they are passionate about spreading the word and ensuring that air pollution is reduced.”

As well as supplying the monitoring equipment for the project, Air Monitors also provided sponsorship funds for the school banners, and this was reflected in a stunning night-time time display on the roof of Glasgow’s famous SEC Armadillo, organised by SEPA. A variety of images relating to air quality were projected on to the Armadillo’s roof, highlighting for example Clean Air Day 2019, as well as the Air Monitors logo.

SEPA’s Dr Colin Gillespie said: “It has been great to work again with Air Monitors and the councils, raising awareness in air quality around schools, promoting active changes to reduce pollution and encouraging pupils to think about more sustainable forms of travel.”

Car-free Cardiff achieves 69% air quality improvement

18-Jul-2018Smart cities | Traffic | UrbanUK

Car-free Cardiff achieves 69% air quality improvement

On Sunday 13th May 2018, Cardiff Council organised a car-free day in the city’s central area. As a result of this event air quality monitoring data showed an average 69% drop in nitrogen dioxide (NO2) – one of the pollutants of greatest public health concern. Seeking a better understanding of the relationship between air quality and traffic, Cardiff Council hired three AQMesh air quality monitoring pods from Air Monitors Ltd. The instruments were located on streets impacted by the day’s event, and within two of the Councils Air Quality Management Areas (AQMAs); City Centre & Stephenson Court, Newport Road. The instruments continuously recorded air quality at these locations for 20 days before, during and after the event.

“In comparing the results obtained during the Car Free Day Event with results from the following Sunday (20th May) , the monitor on Duke Street showed an 87% reduction in nitrogen dioxide, the monitor in Westgate Street showed an 84% reduction and the third monitor, which was located less centrally from the main road closures, in Stephenson Court, showed a 36% reduction,” commented a Specialist Services Officer, working for Shared Regulatory Services (SRS) on behalf of Cardiff Council . “Comparing the car-free datasets with those of the following Sunday (20th May); the daily average nitrogen dioxide levels recorded by two of the monitors situated within the City Centre AQMA exceeded the EU yearly average limit (40 µg/m3), but on the car-free day, these two monitors measured daily average figures of just 5 and 8µg/m3 of nitrogen dioxide, providing clear evidence that air pollution in Cardiff city centre is generated by traffic.”

Under the European Ambient Air Quality Directive, Welsh Ministers have a duty to ensure that compliance with air quality objectives defined within the directive is achieved. As outlined in Defra’s UK Action Plan for tackling roadside nitrogen dioxide concentrations, July 2017, modelling has indicated that certain road networks in Cardiff fail to meet EU air quality requirements. Cardiff Council has been directed by Welsh Government to undertake a feasibility study, in order to demonstrate how compliance with the directive and its specified limits will be achieved in the shortest time possible. In order to implement air quality interventions, the Council therefore needs to evaluate the sources of pollution so that appropriate interventions can be assessed to ensure that effective mitigation measures can be implemented. At the same time, it will be necessary to engage with citizens to ensure that they appreciate the importance of tackling air pollution.

Nitrogen dioxide and particulates are the main cause of failures to meet EU air quality limits in cities around the world, and it is well known that traffic, and diesel vehicles in particular, are a major source of these pollutants. The AQMesh pods measure a range of gases including nitrogen dioxide, so by monitoring the effect of removing traffic, the Council will be in a better position to implement improvement measures.

Two automatic air quality monitoring stations are located in Cardiff, and the Council supplements the data from these monitors with a network of non-automatic passive diffusion tubes. However, the Specialist Services Officer from SRS says: “The fixed stations can’t provide street-level monitoring at the most sensitive locations, and the use of diffusion tubes does not provide a detailed understanding of daily trends as they only provide a monthly average figure. However, SRS are aware of the capabilities of the AQMesh pods and are familiar with the accuracy and flexibility that they are able to deliver, which is why they were chosen for the car-free day project.”

In order to assure the quality of the monitoring data, the AQMesh pods that were employed during the project were checked against a reference station and were found to have performed very well. “The pods are small, lightweight and battery-powered which makes them quick and easy to deploy,” the Specialist Services Officer adds. “This is crucial to our work because it gives us the ability to site them on lamp posts so that they measure the air that people are breathing. In addition, they are web-enabled which means that we can monitor air quality in almost real-time; providing a unique insight into the specific events that impact air quality.”

It has been estimated that around 40,000 people in the UK die prematurely as a result of air pollution, mainly in the larger towns and cities. In Wales, the urban areas exceeding EU limits include Cardiff, Swansea, Port Talbot, Newport, Chepstow and Wrexham.

Following completion of the monitoring work in Cardiff, SRS has had requests for the data from a number of organisations, and are keen for the work to be publicised as widely as possible. Highlighting the importance of citizen engagement, the SRS Specialist Services Officer says: “A wide variety of potential measures are available to combat air pollution in Cardiff, but many involve inconvenience for members of the public and cost to the public purse, so we need those affected to be on-board with the measures being taken. We are also hoping that the public will be keen to help, by participating in car-share schemes for example.”

Traffic pollution in office buildings drives innovative indoor-outdoor air quality management

24-Apr-2018HVAC optimisation | Indoor | Traffic

Traffic pollution in office buildings drives innovative indoor-outdoor air quality management

Extensive research has shown that indoor air quality is often worse than outdoors. Closed system buildings trap harmful particles inside, and external air intakes can bring in more polluted air from outside.

Whilst many heating, ventilation and air conditioning systems (HVAC) use particle filtering, managed through air exchanges, they can often worsen levels of polluting gases, such as NO2 – now classified by the World Health Organisation as a Class 1 carcinogen. Natural ventilation systems have no particulate filtration at all, and buildings are also frequently completely shut up all night with no ventilation running, trapping the pollution that has built up over the day.

Unlike outdoor air quality (which the government is responsible for), indoor air quality is the responsibility of the building owner or manager, and with research proving that poor air quality has a significant impact on human health, air pollution should be a key factor of employee health & safety.

Future Decisions has teamed up with AQMesh and UK distributor, Air Monitors Ltd, to supply pollution mitigation to improve indoor air quality. Future Decisions has developed patented smart management strategies that aim to reduce internal air pollution by 30% – this is usually enough to bring the air quality within UK & EU regulatory levels, and often within the World Health Organisation levels.

AQMesh measures NO, NO2, O3, NOx, CO, CO2, SO2, PM1, PM2.5, PM10, temperature, pressure and relative humidity in a small pod which can be mounted both indoors and outdoors on a wall or post. Batteries, solar power and DC power options give flexibility of mounting anywhere. AQMesh was designed to offer an easy-to-use air quality monitoring system that can deliver localised real-time readings, improving the accuracy and scope of gathering air quality data in order to support initiatives to reduce air pollution and its risk to human health.

AQMesh tracks pollution hot-spots

24-Feb-2016Roadside | Traffic | UrbanUK

AQMesh tracks pollution hot-spots

Situated in the south west of Wales (UK), in a largely rural area bordering the Brecon Beacons, Carmarthenshire’s air quality is predominantly good. However, there are areas of concern where major roads pass through some of the County’s larger towns, including Llanelli, Carmarthen and Llandeilo, where air quality is dominated by the effects of road traffic. The County Council is therefore testing new monitoring technologies so that it will be better able to track the effects of improvement measures.

Carmarthenshire County Council operates a network of passive diffusion tubes as part of its commitment to Local Air Quality Management under Part IV of the Environment Act 1995. However, in 2013, Air Monitors supplied the Council with a new type of air quality monitor, ‘AQMesh’, that is able to provide continuous air quality readings for a range of important parameters. This new technology is small, wireless, lightweight and battery powered, which means that it can be quickly and simply mounted in almost any location.

The Council’s monitoring programme has identified Nitrogen Dioxide (NO2) from traffic emissions, mostly diesel vehicles, as the pollutant of greatest concern. A number of locations in the centre of Llandeilo have been shown to be in breach of European air quality standards, so an Air Quality Management Area (AQMA) has been established in the town. Whilst NO2 levels are not sufficiently high to cause immediate health effects, the current levels could cause adverse health effects over the long term, particularly in people suffering from respiratory conditions such as asthma and chronic obstructive pulmonary disease.

NO2 reduction by about 25µg/m3 is the main objective of the air quality action plan, but the Council is determined to ensure that all pollutants remain at safe levels, so the ability of the AQMesh to monitor a wide range of parameters (Ozone, Carbon Monoxide, Sulphur Dioxide, Nitrogen Monoxide, Nitrogen Dioxide, Temperature, Humidity and Atmospheric Pressure) is a major benefit.

Stephen Hoskin from Air Monitors says: “There are a number of important new features in AQMesh that are fundamentally changing the way that air quality is monitored; firstly, it can be located where air quality matters most – where people are breathing.

“Secondly, in comparison with large reference stations, with only a small drop in levels of accuracy, the cost of monitoring is reduced dramatically, which means that users will be able to measure air quality in more locations, and this will reduce the UK’s current dependence on modelling to ‘guesstimate’ air quality.
“Finally, by providing near real-time data over the internet, useful air quality data can be made available to a much wider audience via smartphones, tablets and computers.”
AQMesh in Carmarthenshire is being operated by Oliver Matthews, one of the Council’s Environmental Health Practitioners with specific responsibility for air quality. He says: “In the past we have not continuously monitored this range of parameters because doing so would have involved the installation of a large, expensive air quality monitoring station that would have probably required planning permission.

“These reference stations offer high levels of accuracy, but come with large capital and operational costs, and cannot typically be moved, whereas the AQMesh can be quickly attached to a lamp post or other item of street furniture at a fraction of the cost.

“Alternatively, we could install passive diffusion tubes, one for each parameter of interest, but the disadvantage of this method is that the tubes are left in place for four to five weeks, so we are only provided with an average figure over that time, with no indication of the peaks and troughs that occur. For example, a recent road closure resulted in the diversion of traffic and, with the benefit of AQMesh, we were able to track a significant short-term rise in NO2.”

With the assistance of key stakeholders, the AQMA draft action plan has identified a number of options to improve air quality, and the AQMesh unit has been installed in order to help assess the success or failure of each initiative.

Interestingly, the development of the AQMA action plan benefitted from essential gas main works that were required in Llandeilo because this involved the closure of the main trunk road (Rhosmaen Street) for a period of up to three months, which provided an opportunity to identify the effects of traffic diversions on air quality.

Options that are being considered as part of the action plan include improving traffic management and seek to prevent vehicular ‘stop/start’ and promote a smooth flow of traffic. Typically, these options could include the provision of extra parking outside of the AQMA, the removal of some on-road parking within the AQMA, better parking enforcement, relocation of bus stops, reviewing pedestrian crossings and improvement of bottle necks.

Summarising Oliver says: “The network of diffusion tubes has enabled us to identify hotspots, and these are the locations at which the AQMesh will be of greatest use because we will be able to study trends and look for the causes of elevated pollution levels at specific times of the day.

“Data from the AQMesh are provided on a website via the ‘Cloud’ so, looking forward, this technology has the potential to make a major difference to air quality improvements and to the transparency and availability of data. For example, it may become possible to integrate air quality monitoring with automatic traffic management.”