Explore AQMesh

Six hidden costs to look out for when choosing a small sensor air quality monitoring system

14-Feb-2024Construction | Environmental | Fenceline | Industrial | Local authorities | Mining | Networks | Oil & Gas

Six hidden costs to look out for when choosing a small sensor air quality monitoring system

Anybody in the market for purchasing a small sensor air pollution monitoring system will need to consider budgets, but it’s not always obvious how the products being reviewed actually compare across their full operational life. A small sensor air quality monitoring system or network can be a significant purchase, so whether project-based or with ongoing monitoring in mind, it is likely that the equipment will be in use for several years. There are six main areas of cost highlighted here, all of which kick in after initial purchase.

Without direct experience of a product, it’s natural that the focus is on the initial price tag, but that may only reveal part of the total cost. The weeks or even months spent researching products is a fraction of the time – up to 10 years – of expected product use and experience. A typical timeline of product experience will start pre-sale and run through installation, project set-up and data access arrangements, data quality assurance, planned and unplanned maintenance, co-locations and re-locations, updates, upgrades, reconfiguration, and so on. How much will you have spent – directly or indirectly – by the end of the product’s life?

Over the product’s span of operation, hidden costs can include:

  1. ‘Boots on the ground’ – field staff for installation, co-location, maintenance, repairs, product replacements, and so on. Some of this will be essential, but it can add huge cost if uncontrolled, particularly if units are installed far away from the team’s base.
  2. Consumables – sensors need to be replaced periodically, but how often and at what cost? Some systems require that sensors are replaced after a short time, can only be replaced as part of a multi-sensor cartridge, are very expensive, or a combination of these.
  3. Data services – whilst the charge is to cover the real cost of data processing and storage (not access), annual data prices vary considerably and add up over the years.
  4. SIM – an annual charge for a global SIM to connect the unit to a server is often cost-effective and convenient, but charges vary. This may depend on where in the world the unit is installed, but it’s worth checking prices and whether you have the option to use a local SIM, if that would be cheaper.
  5. Support – what is included in support? Is it limited in any way? Ask for examples of committed support of networks in challenging situations, well after year one.
  6. Length of warranty – this is a clear commitment from the manufacturer of what you should expect from their product: putting their money where their mouth is.

We have worked out that for two of the most popular AQMesh models (or specification) other products may be as much as 29% cheaper than AQMesh at initial purchase, but that flips to 31% to 70% more expensive overall – including the initial purchase – after five years of use. This is based on quoted consumables, data and SIM costs, so there may be even more indirect costs that we have not included in our calculation. Whilst these additional costs can possibly be accommodated within budgets for a small number of pods, hidden costs can scale at a rather alarming rate for larger networks.

It’s also worth checking how much flexibility you may have in the future:

  • You may only be able to renew data services if you purchase replacement sensors
  • Support may be limited in some way
  • You may not be able to use a SIM of your choice

Your expectation of the product life may be different to the manufacturer’s, and that can apply in both directions. We have been asked to quote AQMesh pods, which we expect to function happily for 10 or more years, by customers who really want to buy a disposable product for a short project. If that is the case, rental is a great option. With all costs wrapped up into a single price, from three months to years at a time, costs are totally predictable and full support ensured, right through to free product replacement, should it be required.

AQMesh pods, with their robust and proven design, are expected to function in the field with minimal intervention for at least 10 years. The pods automatically come with a 5 year manufacturers’ pod warranty. We commit to – and deliver – lifetime remote support, included in the price. Remote firmware and gas processing algorithm upgrades come as part of any purchase, ensuring pods can always be updated to latest and improved versions for free.

The pods are designed to be user-serviceable, meaning only consumable components need to be replaced, rather than expensive cartridges which add cost through packaging and electronics. Consumables and yearly contracts can be purchased up front – with the initial pod order – ensuring visibility and security when it comes to future costs and maintenance, as well as appropriate discounts. Practical maintenance videos ensure that any time spent by your team is as efficient as possible, so you can plan ahead with resources and avoid unexpected demands. The team at AQMesh have been supporting pods in remote locations for over a decade, learning from our experiences along the way to ensure you get the right support exactly when you need it.

Do air quality people love holidays more than everyone else?

12-Dec-2023Environmental | Hybrid networks | Industrial | Networks | Traffic

Do air quality people love holidays more than everyone else?

Everyone loves holidays, whether Christmas or anything else, right? So what’s special about ‘air quality’ people? What we get so excited about are ‘free’ experiments, where distinct changes in activity help to peel away the layers of air pollution measured. Over the years, various studies have been published, showing residual air pollution levels when other sources drop – or increase – significantly.

Around this time of year there are changes in emissions activity around schools, businesses and industry, roads (both increases and decreases), burning of solid fuel in households, domestic heating, and so on. As well as looking at changes in measurement over time (hourly or shorter intervals) and space (hyperlocal monitoring means you can literally measure at any point you wish, from a specific point on a specific road junction to a school playground), measurement of multiple parameters is an eye-opener.

Studies by the University of Cambridge have shown how small sensor air quality measurements can be used in conjunction with their scale separation technique to distinguish between local and regional or background sources. Comparing the proportion of different pollutants in this way can give a ‘fingerprint’. CO2 measurements provide a baseline combustion level against which generally traffic-related NO / NO2 / NOx can be compared. Looking at PM fractions against CO2 and other gases can also provide more insights than individual measurements alone can provide. And, of course, dramatic shifts over time – like holidays – sharpen that focus.

A network of sensor systems has the additional benefit of showing whether pollution is being displaced from one location to another, with this forming part of the analysis around other behavioural change triggers, such as the introduction of a traffic Low Emission Zone (LEZ). It can also help identify hyperlocal sources of pollution, where high levels of pollutants are only seen by one of the monitoring points.

One memorable headline from several years ago was that a higher amount of PM2.5 in one London borough over the Christmas period could be attributed to domestic solid fuel combustion (cosy wood-burners) than road traffic. So, whether it is reduced traffic around schools, increased traffic at shopping centres or chestnuts roasting on all those open fires, the holidays can provide a curious insight to local air quality data and pollution patterns.

Happy holidays from the team at AQMesh.