Explore AQMesh

AQMesh used for baseline monitoring on proposed Energy from Waste facility

19-Jan-2022Baseline study | Consultants | EfW | Environmental monitoringUK

AQMesh used for baseline monitoring on proposed Energy from Waste facility

The intended EfW site will process around 300,000 tonnes of residual waste per year in order to generate electricity and heat, which will be exported for use at local properties. The operation of such a facility may result in atmospheric emissions from the combustion of waste and subsequently contribute to an increase in pollution. As such, it is important to determine the existing air quality in the local area prior to the site being established.

An AQMesh air quality monitoring system was used during the first stage of testing, which involved a programme of continuous sampling to measure concentration levels of nitrogen dioxide (NO2) in ambient air, as well as particulate matter.

The AQMesh pod was configured to undertake monitoring of NO2 concentrations at 1-minute averages and measurement of PM10 and PM2.5 at 15-minute averages. This was then placed on site and remained at its location for the course of one year.

The outcome of Redmore Environmental’s campaign was a complete data set of existing air quality conditions within the vicinity of the proposed EfW site. The results for individual pollutants were reviewed, compared with relevant Air Quality Standards set for the protection of human and ecological health and analysed in an overarching technical report.

A full range of Redmore Environmental’s testing capabilities can be found on their Air Quality Monitoring Services page.

AQMesh measures air pollution in Glasgow ahead of COP26 meeting

26-Oct-2021Environmental monitoring | Networks | Smart cities | UrbanUK

AQMesh measures air pollution in Glasgow ahead of COP26 meeting

Two AQMesh pods measuring airborne particulate matter have been loaned to the University of Cambridge, ahead of the COP26 meeting in Glasgow, to support research into measurement of particulate matter. The pods have been monitoring PM1, PM2.5, PM4, PM10 mass estimates and Total Particle Count, since April 2021. The team from the University of Cambridge, led by Professor Rod Jones, are using data from these units, which have the heated inlet option to minimise the effect of air moisture on readings, to support their work on understanding differences in chemical composition between particles.

The compact small sensor air quality monitoring system, designed to measure levels of pollutant gases in ambient air, also offers a non-dispersive infrared (NDIR) carbon dioxide (CO2) sensor, providing accurate outdoor CO2 measurements. As well as monitoring deviations in background levels of CO2, analysis of data from the system can also identify combustion plumes and provide an indication of whether the gases are being produced by a local or distant source, and from which direction.

Professor Jones has previously used CO2 data from AQMesh pods during the Breathe London pilot project, in conjunction with other AQMesh gas measurements. AQMesh offers a range of ambient air measurements relevant to climate change studies, including NOx, SO2, CO, CO2, Black Carbon, TVOC and methane. The Ecotec group – which owns AQMesh – specialises in methane leak detection and gas stream methane monitoring. Applications include pipeline methane measurement for energy-from-waste on landfill, biogas, waste water treatment and agricultural sites. Methane leaks are also detected using a range of laser-based sensors, providing a critical resource for methane-generating operations, including the oil and gas industry.

COP26 is the upcoming 26th United Nations Climate Change Conference, taking place in Glasgow, Scotland between 31st October and 12th November 2021. The aim of the conference is to progress global efforts towards the goals the UN Framework on Climate Change and the Paris Agreement – the legally binding international commitment to reduce carbon emissions, agreed at the COP21 conference in 2015.

CO2 emissions are a key factor in climate change and are largely caused through the burning of fossil fuels such as coal, gas and oil, which are burned to generate heat and electricity for the world’s power plants, cars, planes and industrial facilities, to name a few. Monitoring CO2 emissions is therefore vital in understanding, managing, mitigating and reducing sources of CO2 and its impact on the atmosphere and environment. Methane is an even more potent greenhouse gas and prompt identification of methane leaks is a critical part of the action plan to reduce greenhouse gas emissions.

AQMesh is an air quality monitoring ‘pod’ which can be mounted on a post, wall, fence or other position to measure ambient air pollution. Each pod measures about 20cm / 8 inches in each direction and weighs about 2Kg / 4lb. Sensor data is securely transmitted using the global mobile phone network to a cloud server, where carefully developed corrections for environmental conditions are made and data accessed by secure web login or API. Sensor options are offered on the basis that the level of sensitivity and selectivity for the target pollutant are fit for purpose, whether directed towards local air pollution or climate change pollutant monitoring.

AQMesh measures SO2 and PM from Nicaragua volcano

28-Jun-2017Environmental monitoring | Volcanic emissionsAmericas | Nicaragua

AQMesh measures SO2 and PM from Nicaragua volcano

AQMesh is currently in use in Nicaragua, monitoring air quality in communities living near Masaya volcano. The six AQMesh pods have been used to show variations in volcanogenic SO2 and PM levels at different times and at different locations across the area.

The pods, which have independent power and communications so they can be mounted where required, were installed in March 2017 as part of a research project funded by the Global Challenges Research Fund: Unseen but not unfelt: resilience to persistent volcanic emissions (UNRESP). The project is led by the University of Leeds and is a multi-partner collaboration of several universities in the UK and Nicaragua, as well as Nicaragua’s natural hazards observatory INETER and the Icelandic Met Office.

The Global Challenges Research Fund supports projects focusing on challenges faced by developing countries, aiming to build resilience to natural and anthropogenic hazards. The aim of UNRESP project is to devise an early warning system for dangerously high levels of air pollution, specifically SO2 and particulate matter. As this is a 12-month foundation phase project, the data are not currently being made public but will be put in the hands of local authorities and other stakeholders when the warning system is refined. AQMesh readings are being compared to predictions from a pollution dispersion model, CALPUFF, which requires relatively little computing power. The CALPUFF model has been successfully used for air pollution forecasting at other volcanic sites, such as a recent eruption in Iceland which did not produce ash but emitted twice as much SO2 as all European Union countries combined and caused repeated air pollution in Iceland for 6 months.

“Air pollution is a chronic and serious hazard affecting many developing countries, but there is generally very limited capability to monitor and mitigate it. AQMesh provided us with an opportunity to install the first AQ monitoring system in Nicaragua – the pods are very cost-effective which is of utmost importance for the local setting, yet they provide data that are of high quality. Real-time data on the ground is vital for quantifying and understanding the duration, peak concentration and frequency of high air pollution episodes, which are factors that directly impact human health”, commented Dr. Evgenia Ilyinskaya who is leading the project. The UNRESP team started by hiring five pods for three months via UK distributor, Air Monitors Ltd. as well as purchasing one AQMesh pod for long-term observations. The pod rental has been extended for another three months and the practicality of long-term use of this sort of equipment is being evaluated, including the use of rechargeable batteries or solar power. The team is working closely with local communities and such stakeholders taking custody of the equipment intended to protect their own community mitigates against some risks, such as theft or damage.

Although there is no reference station at the site, diffusion tubes have been used to take measurements which can be compared to the 15-minute average, real-time readings from AQMesh. Whilst EU air quality standards focus on the short-term high concentrations typical of SO2 from an industrial source the UNRESP team is trying to understand the impact of long-term elevated SO2 on the population. Having SO2 measurements with high time and spatial resolution is critical for this and the plan is to potentially create an alert for accumulated concentration of pollutants.

The draft proposal for a follow-on project at the site states the collaboration with AQMesh identified ways of improving the equipment for monitoring volcanogenic pollution, which tends to be much more corrosive than ‘typical’ urban pollution. Dr. Evgenia Ilyinskaya commented, “the AQMesh equipment is extremely cost-effective while providing data quality comparable with EU-certified monitoring. One AQMET station was purchased during the UNRESP foundation phase and it will remain in Nicaragua to form part of the permanent AQ network.”