Author: AQMesh

AQMesh thrives through another harsh Winter

AQMesh operating in cold snowy conditionsNorth Americans will be well aware of the particularly harsh weather in the early months of 2019, but AQMesh has taken conditions in its stride. The AQMesh stated operating range of -20°C to + 40°C is backed up by long-term operation across a wide range of climates.

AQMesh pods used by Minnesota Pollution Control Agency (MPCA) to measure pollutant gases and particulate matter, such as NO2 and PM2.5 , installed on streetlights around Minneapolis St. Paul have seen temperatures as low as -25.4°C (-13.7°F) and continue to run smoothly.

Monika Vadali, leading the MPCA project, commented “We are quite impressed with the temperatures we have seen this winter”. However, when asked for a photo of the pods, she said “I can’t get to any of the pods as we have had so much snow and cold that there is 5-6ft of snow around some of the poles, making access difficult.” Temperatures recorded elsewhere have not been so low this year but AQMesh pods have been installed over previous winter in Sweden, Finland, Canada and central Europe, with temperatures regularly dropping below -20°C.

Despite such harsh weather conditions, the AQMesh pods have continued to monitor and communicate data to the AQMesh server, where it is securely accessed by users. The hardware design has been refined to ensure the equipment has the resilience to survive, with minimal maintenance, for years. The initial concept was for the pod to measure pollutant gases, particularly NO2, for two years on a single lithium battery. Although many users now run shorter projects or choose solar or DC power sources, the principle – and challenge – is unchanged.

In addition to its physical design, data processing on the AQMesh server includes carefully developed correction algorithms which compensate for extreme conditions. Remote diagnostics also identify unexpected patterns in sensor output, which may affect confidence in the data, which is then flagged.

At the same time as the AQMesh pods were under several feet of snow in Minnesota, pods in the southern hemisphere have been regularly operating at temperatures in excess of 30°C, hitting 44.7°C  in South Africa and 46.2°C in Australia.

AQMesh pods have been deployed long-term (many pods are in their sixth year of deployment around the world) and as temperatures rise across some of the hottest locations where pods are deployed – Kurdistan, Pakistan, Myanmar, Arizona (USA), Ghana – the latest generation of sensors and processing algorithm will continue to provide reliable and traceable air quality measurements in locations where other monitoring equipment cannot readily be deployed.

In the southern regions of the USA, with very hot temperatures and varying levels of humidity, AQMesh pods maintained high precision and accuracy against co-located certified reference equipment, with a correlation R2 of 0.92 for ozone, compared to collated FEM. Many parts of the world where AQMesh operates record relative humidity (RH%) over 90%, often on a regular or sustained basis.

AQMesh also stands up to high winds and extreme rainfall and is now available with an optional wind speed and direction sensor to complement its extensive range of measurable parameters. The meteorological data gathered by this sensor can help distinguish between local and regional sources of pollution.

AQMesh maintains high accuracy in cold weather conditions

Read more about the MPCA project.

Browse AQMesh co-location comparison results.

Learn more about where and how AQMesh is used.

AQMesh used in smart cities to share air quality data with the public

AQMesh used in smart city networks to share air quality information with the publicIn an inter-connected world, air quality is increasingly becoming another measurement made available to the public, but how reliable is the data?

Common air pollutants such as NO2 and PM2.5 mix at different rates depending on their source and local weather conditions, particularly wind speed, leaving large local variations in pollution levels. Urban air quality has traditionally been managed by authorities using a combination of large, compliance standard (reference) measurement stations and modelling based on an emissions inventory. Research has shown that increasing the number of measurement points improves the spatial resolution of urban air quality models.

Small-sensor air quality monitoring technology offers the possibility of more local measurements, and its emergence coincides with the appetite from Internet of Things (IoT) developers to map air quality across cities in real-time and communicate this information to the city inhabitants in various ways. This is leading to a growing number of smart city projects using a range of monitoring devices, but understanding the air quality information gathered and sharing it with the public can still be complicated.

Many air quality sensors that are small, cheap and have low power consumption are often very limited by the influence of fluctuating temperatures and cross-gas effects and do not produce good air quality readings. It is therefore beneficial to use a small-sensor air quality monitoring system that incorporates processing, correction and a QA/QC process in order to offer meaningful readings. Environmental authorities, including the US EPA, have developed air quality indices (AQI) and other tools to communicate local air quality to the public. These authorities are looking at how to modify that approach to provide more localised information from small sensor-sensor systems, such as air quality in a neighbourhood – or even a street – rather than a whole section of a city.

AQMesh, a small-sensor air quality monitoring system, is being used in a variety of successful smart city projects which have a range of objectives, but with a common goal of informing the public about the air quality and pollution levels in the local area where they live and work.

‘Breathe London’ was launched in February, with a sophisticated network of air quality monitors to help investigate and improve London’s toxic air. A range of fixed and mobile sensors will be used to build up a real-time, hyperlocal image of London’s air quality. The technology company Air Monitors designed and installed the network of AQMesh air quality monitoring pods, as well as the air quality analysers that were specially adapted to operate inside Google Street View cars.

In Minneapolis, Minnesota Pollution Control Agency (MPCA) has deployed 50 AQMesh pods across 50 zip code areas in order improve understanding of the small-scale differences in air pollution within urban areas.

Similarly in Newcastle, 55 AQMesh pods, supplied and supported by Air Monitors, form part of a network of over 600 sensors managed by the UK’s first Urban Observatory, which aims to provide Newcastle’s citizens with a digital view of how cities work.

These smart cities demonstrate that meaningful and reliable air quality information can be shared with the public when networks are deployed effectively and supported by air quality professionals who understand the capabilities – and limitations – of small-sensor technology and how the local environment affects air quality readings.

—–

Learn more about AQMesh.

In the UK? Visit Air Monitors Ltd.

Read more AQMesh news.

AQMesh measures influence of cruise ship emissions on local air quality

AQMesh and Olfasense at Port of KielAQMesh has been used in a project at the Port of Kiel, Germany, to measure emissions of nitrous oxides (NOx) and fine particulate matter (PM) around its cruise ship terminal.

This year the port attracted 166 visits by 33 different cruise ships, bringing a record breaking 600,000 visitors into the city. Emissions from the cruise ship terminal and its impact on the local air quality has been in discussion for some time, as the city’s references stations indicate that nitrogen dioxide (NO2) levels regularly exceed the World Health Organisation’s annual mean limit of 40μg/m3.

The joint project with Eurofins and Olfasense, who combined AQMesh air quality monitors with the Ortelium dynamic atlas system, measured and studied levels of NO2 and PM at the cruise ship terminal over several months.

AQMesh pods, supplied by its German distributor Envilyse, measured NO, NO2, O3 alongside PM1, PM2.5 and PM10, as well as relative humidity, temperature and atmospheric pressure. After being co-located with passive samplers at the installation site to provide the greatest degree of accuracy, real time sensor data from the AQMesh pods was fed into Ortelium.

The Ortelium atlas allowed measurements from the AQMesh pod to be visualised in real time and, combined with meteorological data feeds, showed how the emission levels changed during arrival, berthing and departure of the cruise ships.

Data analysis from this study concluded the cruise ships could not be attributed to high levels of NO2. This is similar outcome to a study carried out at a UK airport, which concluded that local traffic was in fact more of an issue than the airport activity.

Plumes from shipping are notoriously difficult to detect and analyse from land, but AQMesh now has a carbon dioxide (CO2) sensor which allows a combustion plume to be detected from elevated CO2 levels. Pollutants can then be evaluated in this context.

AQMesh is in use at a variety of harbours and ports around the world including the UK, Italy, Norway, Netherlands, Germany and Vietnam. The pods can now monitor up to 6 gases using the latest generation of sensors, as well as PM1, PM2.5, PM10 and total particle count (TPC) with a light-scattering optical particle counter.

—–

Browse AQMesh co-location comparison studies.

Find out about Ortelium.

Read more AQMesh news.

Latest AQMesh co-location studies show capability of small sensor systems

AQMesh air quality monitor and new solar panel power optionRecent co-location comparison trials against certified reference equipment continue to prove AQMesh performance and reliability for localised air quality monitoring.

Trials in the USA, UK and Western Europe this year have delivered high correlation coefficients (R2 values) for key pollutants such as nitrogen dioxide (NO2), ozone (O3) and fine particulate matter (PM2.5). An R2 value of 0.92 against reference for O3 was achieved in Southern USA over the Summer, as well as an R2 value of 0.94 against reference for NO2 in Northern USA during the cold season.

Co-location trials for AQMesh and field equivalent methods have been taking place globally for several years, with the results published on the AQMesh website, demonstrating how performance and accuracy continues to improve with each new version of the product. A number of independent studies have also been carried out, verifying the AQMesh system’s capability.

AQMesh is a small sensor air quality monitoring system for measuring pollutant gases and particles in ambient air. It is a flexible, quick to install and easy to use air quality monitor that can deliver localised, real-time readings, aiming to improve the spatial resolution, scope and accuracy of gathering air quality data.

Its range of wireless power options includes a recently improved smart solar panel, which is now larger than the previous and has a more efficient charge, allowing for year-round operation for standard gas and particulate AQMesh pods across Western Europe and regions on a similar latitude.

AQMesh pods can now monitor up to 6 gases out of NO, NO2, NOx, O3, CO, SO2, CO2 and H2S using the latest generation of sensors, as well as PM1, PM2.5, PM10 and total particle count (TPC) with a light-scattering optical particle counter. In addition to pollutants, AQMesh can measure noise, relative humidity, pod temperature and atmospheric pressure, all within a single compact unit. Data is completely secure on the AQMesh cloud server, only accessible by a secure login, which allows the user to manage their pods, view customisable graphical data, and download the data for further analysis.

AQMesh is currently in use throughout the world in a variety of air quality monitoring applications and projects, including smart city networks, indoor-outdoor air quality management, employee health and safety, traffic pollution mitigation studies and air quality modelling. Recent case studies show it forming part of a major ‘hyperlocal’ street-by-street monitoring system throughout London (UK), as well as being used in a similar project across 50 zip code areas in Minnesota (USA).

—–

Learn more about AQMesh.

Browse AQMesh co-location comparison trial results.

Read more AQMesh news.

Urban Observatory monitors Newcastle with new generation of environmental sensors

AQMesh air quality monitor being installed in NewcastleThe UK’s first Urban Observatory, led by Newcastle University, has been designed to provide a digital view of how cities work. AQMesh air quality monitoring equipment is being deployed across Newcastle and Gateshead in conjunction with other instruments for monitoring parameters such as air and water quality, noise, weather, energy use, traffic and even tweets.

Forming part of a network of over 600 sensors, the Urban Observatory has already collected over half a billion data points and the information is now starting to shed light on the way different systems interact across the city and provide a baseline against which future cities can be developed and managed.

To date Air Monitors, UK AQMesh distributor, has supplied 55 AQMesh pods and 6 conventional air quality monitoring stations. The conventional stations employ standard reference method instruments to measure key air quality parameters such as Nitrogen Dioxide, Ozone, Carbon Monoxide and Particulates. The AQMesh pods monitor similar parameters, but are smaller, solar-powered, wireless, web-enabled devices that can be quickly and easily located in almost any location.

Commenting on Air Monitors’ involvement in the Urban Observatory project, Managing Director Jim Mills says: “The conventional stations are delivering precise, accurate data, and the AQMesh pods are providing the portability and flexibility to monitor air quality accurately and reliably in the locations of greatest interest.”

“Perhaps the most interesting aspect of this project is its ability to engage with the community, providing detailed local air quality data so that both authorities and citizens can make informed decisions on how to reduce exposure to air pollution. Looking forward, it is clear that work in Newcastle will serve as a model for other cities around the world to follow.”

The National Observatories facility was established in 2017 with the Newcastle Urban Observatory as the founding member, supported by £8.5 million investment from EPSRC (Engineering and Physical Sciences Research Council). The guiding principles are to be technology agnostic and vendor non-exclusive, open by default and transparent by design whilst developing a valued, long-term, sustainable platform. In order for the data to be useful to better understand cities and to facilitate evidence based decision-making across a range of scales and sectors, the data needs to be robust and reliable with known data quality that can be validated.

The AQMesh pods are also being used as part of the ‘Sense My Street’ tool box which enables local communities to deploy sensors and locate them on the streets, collecting evidence to inform or even change their communities.

Phil James, who co-leads the Urban Observatory research, explains: “Cities are complex environments and if we want to develop them sustainably we have to understand how everything interacts.

“By compiling observations and comparing the data, for the first time we are now able to make more informed decisions about designing our cities to work better for people and the environment. Through the Sense my Street project, we are able to give communities the power to gather data relevant to issues that are important to them at a very local scale.”

All of the data is freely available at Newcastle University’s website: www.urbanobservatory.ac.uk, and is being used by researchers, local authorities, regulators, developers, town planners, businesses and members of the public.

—–

Learn more about AQMesh.

Visit UK AQMesh distributor Air Monitors Ltd.

Read more AQMesh news.

AQMesh shows high accuracy local ozone readings across global locations

AQMesh shows high accuracy for measuring ozone across global locationsAQMesh has been measuring ozone (O3) using small sensors since 2011 and the readings from the latest generation electrochemical sensor, using AQMesh v4.2.3 processing, as compared to co-located certified reference readings, consistently show an R2 of over 0.9 with an accuracy ±10ppb (20µg/m3).

AQMesh pods have been measuring ozone levels around the world and co-location comparison studies show very good performance against reference equipment from the latest sensor and processing version. Ozone levels have been particularly high across Western Europe over this summer but are a regular concern in many parts of the world, including the USA. However, there are huge gaps between O3 monitoring points, to different degrees across the world, depending on monitoring equipment budgets. A lower cost small-sensor monitoring solution can provide valuable data within the areas currently lacking in this air quality information. Data validity is typically demonstrated by comparison with a local reference station, although AQMesh is also widely used where no reference data is available.

O3 at ground level is formed by reactions with nitrogen oxides (NOx) and volatile organic compounds (VOCs) from traffic and industrial emissions in the presence of sunlight. As such, hotter, sunnier weather can dramatically increase O3 pollution.

The World Health Organisation (WHO) currently states the daily limit of O3 levels to be 100μg/m3 over an 8-hour mean and advise that prolonged exposure to high levels of O3 can have severe effects on human health, including causing asthma, inflammation of the airways, reduced lung functionality and lung disease. Measuring O3 as a part of an air quality monitoring routine is therefore becoming increasingly important, especially in hotter climates and areas of increased VOC emissions.

O3 can be complicated to measure due to its high sensitivity to environmental conditions and cross-gas effects. Most small sensors for measuring O3 are either electrochemical or metal oxide, but electrochemical sensors (such as those used in AQMesh) have the advantage of low power requirements and can therefore be installed more flexibly. AQMesh pods are compact, wireless units and are available with a variety of power options, including solar panels, which allow them to be installed exactly where monitoring needs to take place.

During summer 2018 AQMesh has been measuring ozone at hundreds of locations across five continents and co-location comparisons show consistently high levels of accuracy. To quote two of many such studies, in an industrial region of the USA, AQMesh O3 measurements compared to FEM gave an R2 of 0.97, and in a similar comparison study in Western Europe the R2 value for O3 was 0.95. AQMesh pods measuring gases can run continuously for over two years using a battery but other power options are available, including solar. Particulate matter (TPC, PM1, PM2.5, PM10) can also monitored with an AQMesh pod, alongside gases including NO, NO2, O3, CO, SO2, CO2 and H2S, as well as pod temperature, RH% and pressure.

The accuracy of AQMesh readings has been proven through an extensive series of global co-location comparison trials and is the proven, commercially available low-cost air quality monitoring system for both pollutant gases and particulate matter, as well as simultaneously monitoring a range of environmental conditions.

—–

Learn more about AQMesh.

Browse AQMesh co-location comparison trial results.

Read more AQMesh news.

Car-free Cardiff achieves 69% air quality improvement

AQMesh helps Cardiff achieve 69% air quality improvementOn Sunday 13th May 2018, Cardiff Council organised a car-free day in the city’s central area. As a result of this event air quality monitoring data showed an average 69% drop in nitrogen dioxide (NO2) – one of the pollutants of greatest public health concern. Seeking a better understanding of the relationship between air quality and traffic, Cardiff Council hired three AQMesh air quality monitoring pods from Air Monitors Ltd. The instruments were located on streets impacted by the day’s event, and within two of the Councils Air Quality Management Areas (AQMAs); City Centre & Stephenson Court, Newport Road. The instruments continuously recorded air quality at these locations for 20 days before, during and after the event.

“In comparing the results obtained during the Car Free Day Event with results from the following Sunday (20th May) , the monitor on Duke Street showed an 87% reduction in nitrogen dioxide, the monitor in Westgate Street showed an 84% reduction and the third monitor, which was located less centrally from the main road closures, in Stephenson Court, showed a 36% reduction,” commented a Specialist Services Officer, working for Shared Regulatory Services (SRS) on behalf of Cardiff Council . “Comparing the car-free datasets with those of the following Sunday (20th May); the daily average nitrogen dioxide levels recorded by two of the monitors situated within the City Centre AQMA exceeded the EU yearly average limit (40 µg/m3), but on the car-free day, these two monitors measured daily average figures of just 5 and 8µg/m3 of nitrogen dioxide, providing clear evidence that air pollution in Cardiff city centre is generated by traffic.”

Under the European Ambient Air Quality Directive, Welsh Ministers have a duty to ensure that compliance with air quality objectives defined within the directive is achieved. As outlined in Defra’s UK Action Plan for tackling roadside nitrogen dioxide concentrations, July 2017, modelling has indicated that certain road networks in Cardiff fail to meet EU air quality requirements. Cardiff Council has been directed by Welsh Government to undertake a feasibility study, in order to demonstrate how compliance with the directive and its specified limits will be achieved in the shortest time possible. In order to implement air quality interventions, the Council therefore needs to evaluate the sources of pollution so that appropriate interventions can be assessed to ensure that effective mitigation measures can be implemented. At the same time, it will be necessary to engage with citizens to ensure that they appreciate the importance of tackling air pollution.

AQMesh helps Cardiff achieve 69% air quality improvementNitrogen dioxide and particulates are the main cause of failures to meet EU air quality limits in cities around the world, and it is well known that traffic, and diesel vehicles in particular, are a major source of these pollutants. The AQMesh pods measure a range of gases including nitrogen dioxide, so by monitoring the effect of removing traffic, the Council will be in a better position to implement improvement measures.

Two automatic air quality monitoring stations are located in Cardiff, and the Council supplements the data from these monitors with a network of non-automatic passive diffusion tubes. However, the Specialist Services Officer from SRS says: “The fixed stations can’t provide street-level monitoring at the most sensitive locations, and the use of diffusion tubes does not provide a detailed understanding of daily trends as they only provide a monthly average figure. However, SRS are aware of the capabilities of the AQMesh pods and are familiar with the accuracy and flexibility that they are able to deliver, which is why they were chosen for the car-free day project.”

In order to assure the quality of the monitoring data, the AQMesh pods that were employed during the project were checked against a reference station and were found to have performed very well. “The pods are small, lightweight and battery-powered which makes them quick and easy to deploy,” the Specialist Services Officer adds. “This is crucial to our work because it gives us the ability to site them on lamp posts so that they measure the air that people are breathing. In addition, they are web-enabled which means that we can monitor air quality in almost real-time; providing a unique insight into the specific events that impact air quality.”

It has been estimated that around 40,000 people in the UK die prematurely as a result of air pollution, mainly in the larger towns and cities. In Wales, the urban areas exceeding EU limits include Cardiff, Swansea, Port Talbot, Newport, Chepstow and Wrexham.

Following completion of the monitoring work in Cardiff, SRS has had requests for the data from a number of organisations, and are keen for the work to be publicised as widely as possible. Highlighting the importance of citizen engagement, the SRS Specialist Services Officer says: “A wide variety of potential measures are available to combat air pollution in Cardiff, but many involve inconvenience for members of the public and cost to the public purse, so we need those affected to be on-board with the measures being taken. We are also hoping that the public will be keen to help, by participating in car-share schemes for example.”

—–

Learn more about AQMesh.

Visit UK AQMesh distributor Air Monitors Ltd.

Read more AQMesh news.

AQMesh introduces new CO2 and H2S monitoring capability

AQMesh is now able to offer CO2 and H2S within its range of gas options for local air pollution monitoringAQMesh is now able to offer CO2 and H2S within its range of gas options for local air pollution monitoring.

The NDIR CO2 sensor, which can be offered within a single AQMesh pod alongside five other gases out of NO, NO2, O3, CO, SO2 or H2S, as well as PM1, PM2.5, PM10, temperature, pressure and humidity, has been developed to deliver a higher performance than those typically used for indoor air quality monitoring. It has been rigorously tested against Picarro reference equipment, resulting in an R2 value of 0.93. Pod-to-pod correlation of over 20 AQMesh pods has shown R2 values of 0.98 and 0.99, and the sensor has a MAE (mean absolute error) of less than 20ppm.

In addition to monitoring deviations from ambient levels of CO2, elevated CO2 levels can indicate that monitoring is taking place in a combustion plume and levels of other gases can be interpreted accordingly. For example, the ratio of CO2 to the other pollutant gases present can indicate whether those gases were emitted by a local or distant source.

An additional electrochemical sensor has been introduced to offer H2S measurements. After integrating the sensor, measurements have been compared to readings from a Honeywell SPM Flex installed at a sewage treatment site with an R2 value of 0.87 over a measurement range of 0-150ppb. Particularly of interest to the oil and gas industry, in association with the SO2 monitoring already available on AQMesh, it can be used to measure emissions from sour gas and residual emissions from flaring operations.

AQMesh can measure up to 6 pollutant gases in various combinations, as well as particulate matter, humidity, atmospheric pressure and noise in one small, compact easy-to-install unit. There is a range of wireless power options, including lithium battery packs and solar panels, with information sent in near real-time to a secure server via cellular GPRS. Data can be accessed by a secure login or can be streamed via an API connection.

AQMesh pods are in use across the globe in a variety of indoor and outdoor air pollution monitoring applications, and are becoming increasingly popular in smart cities and networks. Pod performance has been proven through extensive testing in worldwide co-location comparison trials with reference equipment, which have delivered impressive and reliable correlation results.

—–

Learn more about AQMesh.

Browse AQMesh co-location comparison trial results.

Read more AQMesh news.

AQMesh to be used in new ‘hyperlocal’ air quality network for London

London Mayor Sadiq Khan has launched a new, street-by-street monitoring system that will help to improve that capital’s air quality. From July 2018, and operating for a year, London will benefit from what is being described as the world’s most sophisticated air quality monitoring system. A consortium involving academia, an environmental charity, and commercial partners will install a network of 100 multiparameter AQMesh air quality monitors, whilst also operating two Google Street View cars that will map air pollution at an unprecedented level of detail.

Air Monitors Ltd will supply the AQMesh pods and manage data from all the sensor systems, so that air quality can be visualised and mapped in almost real-time. Working closely with the Greater London Authority, the project will be run by a team of air quality experts led by the charity Environmental Defense Fund Europe, in partnership with Air Monitors Ltd., Google Earth Outreach, Cambridge Environmental Research Consultants, University of Cambridge, National Physical Laboratory, King’s College London and the Environmental Defense Fund team in the United States.

Air Monitors Managing Director Jim Mills says: “It is difficult to underestimate the importance of this project – traditional monitoring networks provide essential information to check compliance against air quality standards, but this network will be ‘hyperlocal’ by which we mean that it will deliver street-level air quality data, which will be of tremendous interest to the public and also enable the effective assessment of air quality interventions.

“The Google Street View cars will take readings every 30 meters, helping us to find pollution hot-spots, so that AQMesh pods can be positioned in these locations. However, the pods are wireless and independently powered, so they can also be quickly and easily fixed to lamp posts in other sensitive locations such as schools.”

In addition to nitrogen dioxide and particulates, which are the pollutants of greatest concern, the pods will also measure ozone, nitric oxide, carbon dioxide, temperature, humidity and pressure. Data will sent, near real-time, to Air Monitors’ cloud-based data management system, which can be accessed by PC, tablet or smartphone by authorised partners, using an assigned login.

The monitoring data will provide baseline air quality data that will be essential in the assessment of mitigation measures, particularly in London’s expanding ultra-low emission zone. For example, on 20th June 2018, Sadiq Khan, announced the creation of the largest double-decker electric bus fleet in Europe, and the new monitoring network will enable the assessment of this initiative’s impact on air quality.

“This project will provide a step change in data collection and analysis that will enable London to evaluate the impact of both air quality and climate change policies and develop responsive interventions,” said Executive Director for Environmental Defense Fund Europe, Baroness Bryony Worthington.  “A clear output of the project will be a revolutionary air monitoring model and intervention approach that can be replicated cost-effectively across other UK cities and globally, with a focus on C40 cities.”

Mark Watts, C40, Executive Director said: “Almost every major city in the world is dealing with the threat of toxic air pollution, which is taking an incredible toll on the health of citizens, public finances, quality of life and contributing to climate change. London is already a world leader in responding to this global threat and with this initiative it will set a new global standard for how street level air quality monitoring can inform strategic policy making. Cities across the C40 network and around the world will be watching closely to understand how this monitoring can deliver cleaner air for their citizens.”

—–

About Environmental Defense Fund
Environmental Defense Fund Europe is a registered charity (1164661) in England and Wales. A recently established affiliate of leading international non-profit Environmental Defense Fund (EDF), the organisation links science, economics, law, and innovative private-sector partnerships to create transformational solutions to the most serious environmental problems. Connect with us at edf.org/europe, on Twitter and on our EDF VoicesEDF+Business and Energy Exchange blogs.

About Air Monitors Limited
Air Monitors is the UK’s leading air quality monitoring company, supplying and supporting instrumentation to central government, local authorities, research and industry. Air Monitors supplies and supports AQMesh in the UK and will also provide and maintain the equipment within the Google Street View cars in the project.

About AQMesh
AQMesh is a fully developed and independently evaluated small sensor outdoor air quality monitoring system, manufactured in the UK by Environmental Instruments Ltd. and in use worldwide since 2012.

About Cambridge Environmental Research Consultants
Cambridge Environmental Research Consultants (CERC) are world leading developers of air quality modelling software. Their renowned ADMS-Urban model will be used together with the sensor data to generate hyper-local air quality mapping both for nowcasts and forecasts, and for policy studies.

About Google Earth Outreach
Google Earth Outreach is a program from Google designed specifically to help non-profit and public benefit organisations around the world leverage the power of Google Maps and Cloud technology to help address the world’s most pressing social and environmental problems.

About the National Physical Laboratory (NPL)
NPL is the UK’s National Measurement Institute, providing the measurement capability that underpins the UK’s prosperity and quality of life. Every day our science, engineering and technology makes a difference to some of the biggest national and international challenges, including addressing air quality issues. http://www.npl.co.uk/about/what-is-npl/

About University of Cambridge Department of Chemistry
The University of Cambridge Department of Chemistry is a world leading research and teaching institution. At Cambridge, the Centre for Atmospheric Science has played a primary role in the development of low-cost sensors for air quality monitoring and in the development of techniques for analysing and interpreting measurements from sensor networks.

About the C40 Cities Climate Leadership Group
Around the world, C40 Cities connects 96 of the world’s greatest cities to take bold climate action, leading the way towards a healthier and more sustainable future. Representing 700+ million citizens and one quarter of the global economy, mayors of the C40 cities are committed to delivering on the most ambitious goals of the Paris Agreement at the local level, as well as to cleaning the air we breathe. The current chair of C40 is Mayor of Paris Anne Hidalgo; and three-term Mayor of New York City Michael R. Bloomberg serves as President of the Board. C40’s work is made possible by our three strategic funders: Bloomberg Philanthropies, Children’s Investment Fund Foundation (CIFF), and Realdania.

Traffic pollution in office buildings drives innovative indoor-outdoor air quality management

AQMesh small sensor air quality monitoring system measuring indoor air qualityExtensive research has shown that indoor air quality is often worse than outdoors. Closed system buildings trap harmful particles inside, and external air intakes can bring in more polluted air from outside.

Whilst many heating, ventilation and air conditioning systems (HVAC) use particle filtering, managed through air exchanges, they can often worsen levels of polluting gases, such as NO2 – now classified by the World Health Organisation as a Class 1 carcinogen. Natural ventilation systems have no particulate filtration at all, and buildings are also frequently completely shut up all night with no ventilation running, trapping the pollution that has built up over the day.

Unlike outdoor air quality (which the government is responsible for), indoor air quality is the responsibility of the building owner or manager, and with research proving that poor air quality has a significant impact on human health, air pollution should be a key factor of employee health & safety.

Future Decisions has teamed up with AQMesh and UK distributor, Air Monitors Ltd, to supply pollution mitigation to improve indoor air quality. Future Decisions has developed patented smart management strategies that aim to reduce internal air pollution by 30% – this is usually enough to bring the air quality within UK & EU regulatory levels, and often within the World Health Organisation levels.

AQMesh measures NO, NO2, O3, NOx, CO, CO2, SO2, PM1, PM2.5, PM10, temperature, pressure and relative humidity in a small pod which can be mounted both indoors and outdoors on a wall or post. Batteries, solar power and DC power options give flexibility of mounting anywhere. AQMesh was designed to offer an easy-to-use air quality monitoring system that can deliver localised real-time readings, improving the accuracy and scope of gathering air quality data in order to support initiatives to reduce air pollution and its risk to human health.

—–

More about pollution mitigation from Future Decisions.

Visit UK AQMesh distributor Air Monitors Ltd.

Learn more about AQMesh.

Archives