

Sensor alerts from AQMeshData.net

Tel: +44 (0)1789 777703

Email: support@agmesh.com

Website: www.aqmesh.com

Environmental Instruments Ltd

Unit 5 The Mansley Centre Timothy's Bridge Road Stratford-upon-Avon Warwickshire CV37 9NQ

Table of contents

1	Alert set up	2
	Goals	
	Definitions & rules	
	Standard averages	
5	Rolling averages	<i>7</i>
6	Alert email	8
7	Frequently asked questions	11
8	Document history & version control	12

1 Alert set up

When setting up an alert on AQMeshData.net there are three main components to the alert: -

- Alert frequency (minutes)
- Averaging period (minutes)
- Threshold values
 - o Upper threshold
 - Lower threshold

These are all entered in the below form on the user interface under "Alert Maintenance" and by clicking the button in the top right of the page.

Contact Name Units Email Address Lower Threshold Pod Serial Number Upper Threshold -1 Sensor Type Alert Frequency (minutes) Measurement Type Averaging Period (minutes) Save Close

2 Goals

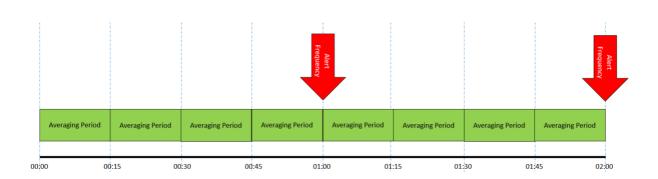
Various combinations of these settings should allow users to receive alerts in line with WHO and similar threshold breaches for target gases and PM fractions as well as any specific to their own applications at intervals which suit their needs or ability to action any mitigation for pollution episodes.

Some examples of these include: -

Pollutant	Averaging period (minutes)	Threshold (Maximum)	Source	
NO2		•	LICEDA NA AOC	
NO2	60	100 ppb	USEPA NAAQS	
NO2	1440 (24 hours)	10 μm/m³	WHO 2021	
03	480 (8 hours)	100 μm/m³	WHO 2021	
03	480 (8 hours)	70 ppb	USEPA NAAQS	
SO2	60	75 ppb	USEPA NAAQS	
SO2	180 (3 hours)	500 ppb	USEPA NAAQS	
SO2	1440 (24 hours)	$40 \mu m/m^3$	WHO 2021	
СО	60	35 ppm	USEPA NAAQS	
СО	480 (8 hours)	9 ppm	USEPA NAAQS	
СО	1440 (24 hours)	$4000 \mu m/m^3$	WHO 2021	
PM10	1440 (24 hours)	45 μm/m³	WHO 2021	
PM10	PM10 1440 (24 hours)		USEPA NAAQS	
PM2.5	1440 (24 hours)	15 μm/m³	WHO 2021	
PM2.5	1440 (24 Hours)	35 μm/m³	USEPA NAAQS	

3 Definitions & rules

Label	Description	Access	Limitations/Expectations
Alert Frequency	Interval which an email containing alert notifications can be sent to the user	User editable	If less than the P3 interval then data may not be transmitted, processed and cached in time for the job to run, preventing email notifications at this interval. Can only be actioned if data is present in the cache, i.e. sent by the pod to the server and processed. Alerts are not based on predicted data. If the "Alert threshold" does not exceed the "Threshold limit" then a notification/email should not be sent
Averaging Period	Period used to create an average to compare against the threshold limits	User editable	Must be greater than or equal to the P2 interval Must be a multiple of the P2 interval Must have a defined start and end date & time Must be in line with user expectations of standard beginning and end times, i.e. 00:01 to 00:15 as a 15-minute period, labelled as "time ending" 00:15
Threshold limits (lower and upper)	Value used to create an alert notification when it is exceeded by the averaging period result	User editable	Can be between an exceptional range, both positive and negative – basically no limit to the value


Rolling average	When "Averaging period" is greater than the "Alert frequency" so the same data (not all) is used for multiple alert checks during the "job run"	-	Must comply with all "Alert Frequency" and "Averaging Period" limitations
Standard average	When "Averaging period" is less than or equal to the "Alert frequency"	-	Must comply with all "Alert Frequency" and "Averaging Period" limitations
Trigger email	Trigger alerts occur when data passes from a level below an "upper threshold" to a value above it, or from a level above a "lower threshold".to a value below it.		
Reset	Reset alerts are generated for the first data point which no longer breaches the threshold value. The alert is then reset and the next breach will create a new trigger alert.	-	

4 Standard averages

"Averaging period" is less than the "Alert Frequency"

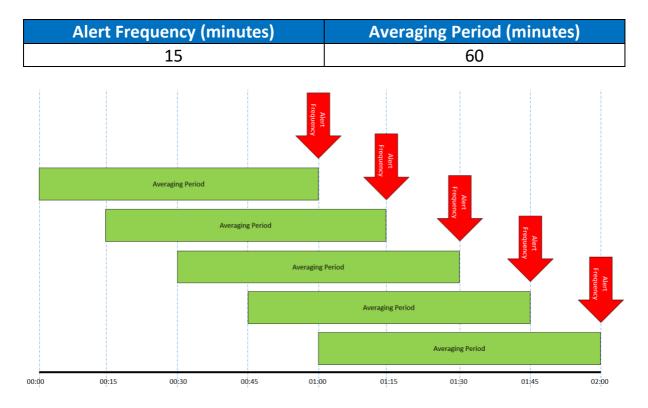
Example:-

Alert frequency (minutes)	Averaging period (minutes)
60	15

In this example the alert is checked at the top of every hour and four averaged periods will be compared against the threshold limits. Should the threshold limits be broken by any of the averaging periods since the previous "job run interval" was completed, then an email notification will be generated which will include time stamped results.

Alert emails will also be generated when data comes back within the alert thresholds set by the user.

Other setting examples (pod dependant):-


Alert frequency (minutes)	Averaging period (minutes)
60	1
60	5
60	10
60	15
60	30
5	1
10	1

10	5
30	1
30	5
30	10
30	15
1440 (24 hours)	1
1440 (24 hours)	5
1440 (24 hours)	10
1440 (24 hours)	15
1440 (24 hours)	30
1440 (24 hours)	60

5 Rolling averages

"Averaging period" is greater than or equal to "Alert Frequency"

Example:-

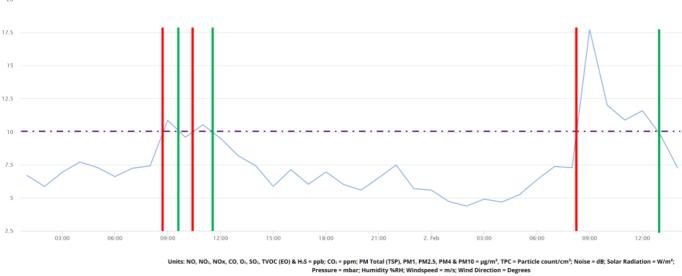
In this example the alert is checked at every 15-minute interval past the top of every hour and one averaging period will be compared against the threshold limits. Should the threshold limits be broken by any of the averaging periods

since the previous "job run interval" was completed, then an email notification will be generated which will include time stamped results.

Alert emails will also be generated when data comes back within the alert thresholds set by the user.

Other setting examples (pod dependant):-

Alert frequency (minutes)	Averaging period (minutes)
60	60
60	480 (8 hours)
60	720 (12 hours)
60	1440 (24 hours)
15	15
15	30
15	60
15	480 (8 hours)
15	720 (12 hours)
15	1440 (24 hours)


6 Alert email

There are two type of email generated by an alert set up; the first is a "Trigger" alert and the second is a "Reset" alert.

Trigger alerts occur when data passes from a level below an "upper threshold" to a value above it, or from a level above a "lower threshold".to a value below it.

While reset alerts are generated for the first data point which no longer breaches the threshold value. The alert is then reset and the next breach will create a new trigger alert.

Multiple trigger alerts are not generated for consecutive data points which breaches a threshold value without the alert being reset.

- · - · - Max Threshold

Trigger Alert

Reset Alert

Example alert email:-

AQMesh Reset Alert for AQMesh Pod

Pod Serial Number	Sensor Type	Maximum Threshold	Units	Measurement Type	Alert Frequency (mins)	Alert Average (mins)
2410148	NO	10	ppb	Prescaled	60	15

Timestamp	Timestamp	NO	NO	Reading Date	Reading Date	Row
UTC	Project TZ	State	Prescaled	From	To	Count
27 Mar 2023 08:00	27 Mar 2023 08:00	Reading	9.50	27 Mar 2023 07:00	27 Mar 2023 08:00	15

Notes

Standard averaging, greater than, test 22/3/23

Column label	Description
Pod Serial Number	Pod which the alert email is referencing
Sensor Type	Sensor species which has breached the alert settings
Maximum/Minimum	Value entered into the alert set up
Threshold	
Units	Units chosen when setting up the alert
Measurement Type	QA/QC level applied to the data used for alerts
Alert Frequency	Value entered into the alert set up
(mins)	
Alert Average (mins)	Value entered into the alert set up
Timestamp UTC	Time and date (time ending) of alert breach in UTC
Timestamp Project TZ	Time and date (time ending) of alert breach in the
	chosen project time zone
[Sensor Type] State	State of the sensor when the alert is breached, i.e.
	Reading, Extreme Environment, Deliquescence. Used
	to help understand the relevance of the alert
[Sensor Type]	Averaged value used for the alert check in the units
[measurement Type]	listed under 'units'
Reading Date From	Start date and time (time ending) used to calculate
	the value used for the alert
Reading Date To	Finish date and time (time ending) used to calculate
	the value used for the alert
Row Count	Depending on the alert settings and pod settings, this
	indicates the number of data points used to calculate
	the average

7 Frequently asked questions

Question	Answer
Are the alert timing based on time	Time ending.
ending or time beginning?	
Can I set up an alert for anything	Yes, simply select the correct sensor
other than a PM or gas reading (e.g.	type and units when setting up the
low battery)?	alert via the user interface.
Can I have alerts sent to more than	Yes. When creating your alert just
one email address?	separate multiple emails using a ";"
	and add as many email addresses as
	you require.
Do I need to enter both an upper	No, for each alert you can chose to
AND lower threshold for the alert?	have either or both an upper and
	lower threshold.

8 Document history & version control

Sensor alerts from AQMeshData.net

Prepared by: <u>Tom Townend, Product Manager</u> Signed:

Authorised by: Steve Earp, Technical Director Signed: Signed:

Version Control QMS ISO9001:2015		
Controlled electronically in Environmental Instruments Ltd "Compliance" SharePoint only		
Version number	Changes made	Date Issued
1.0	Original document	March 2023